Segurança da Baterias de Íon de Lítio
As baterias de íon de lítio têm despertado interesse crescente devido ao seu alto potencial para fornecer armazenamento de energia eficiente e sustentabilidade ambiental . Elas são usados atualmente não apenas em eletrônicos portáteis, como computadores e telefones celulares, mas também para veículos elétricos ou híbridos.
Na verdade, para todas essas aplicações, o excelente desempenho e a densidade de energia das baterias de íons de lítio as tornaram cada vez mais populares, pois elas apresentam vantagens inerentes sobre outros sistemas de bateria, como alta capacidade e voltagem específica, sem memória, excelente desempenho de ciclo, pouca auto descarga e ampla faixa de temperatura de operação.
A expansão adicional do mercado das baterias de íons de lítio e suas implicações em grande escala em VEs são atualmente significativamente prejudicadas, no entanto, por suas limitações no que concerne ao desempenho de segurança. Nos últimos anos, toneladas de baterias de íons de lítio foram recolhidas devido a acidentes de explosão e incêndio, resultando em graves problemas econômicos para os setores de mercado relacionados e prejudicando significativamente a reputação das baterias de íons de lítio.
Centenas de milhões de células de baterias de íons de lítio são produzidas todos os anos, e falhas catastróficas, como explosão, derretimento e incêndios, são raras. Ainda assim, houve mais de 45 recalls de produtos por baterias de íon-lítio com defeito desde 2002, de acordo com a Comissão de Segurança de Produtos de Consumo dos EUA. Consequentemente, cada vez mais atenção está sendo dada às questões de segurança das baterias de íons de lítio e um grande número de estratégias de segurança estão sendo desenvolvidas.
A segurança da bateria é profundamente determinada pela química da bateria, seu ambiente operacional e a tolerância ao abuso. A falha interna de uma bateria de íons de lítio é causada a partir instabilidade do sistema eletroquímico. Portanto, compreender as reações eletroquímicas, propriedades do material e reações colaterais que ocorrem nas baterias de íons de lítio é fundamental para avaliar a segurança da bateria.
Alta Ansiedade
O termo Ansiedade de Autonomia (em inglês, Range Anxiety) foi relatado pela primeira vez na imprensa em 1 de setembro de 1997, no San Diego Business Journal, por Richard Acello, referindo-se às preocupações dos motoristas de carros elétricos GM EV1.
Ansiedade de autonomia é o jargão que faz referencia ao medo que os motoristas e proprietários de um veículo tem, acerca da preocupação se o tal veículo uma vez abastecido de energia motriz, tem ou não alcance suficiente para chegar ao seu destino, sem sofrer uma pane de falta de energia em meio ao percurso, terminando encalhado junto com os ocupantes do veículo.
O termo ansiedade por autonomia é usado principalmente em referência a veículos elétricos a bateria (sigla em inglês, BEVs Battery Electric Vehicle), é considerado uma das principais barreiras para a adoção em larga escala de carros totalmente elétricos .
Duas diferentes metas são de suma importância para serem trabalhadas como principais estratégias a fim de reduzir, aliviar e, quem sabe, por fim eliminar a ansiedade por autonomia entre motoristas de carros elétricos
- A implantação de uma ampla infraestrutura de carregamento (principalmente em rodovias)
- O desenvolvimento de maior capacidade armazenamento de energia dos pacotes de bateria dos VEs (mantendo-o a um preço econômico).
De acordo com um estudo da American Automobile Association, a cura para a ansiedade de autonomia se dá quando o motorista passa a possuir um veículo elétrico. Todavia, ainda assim, o usuário do VE deverá ficar sempre de olho atento à operação, verificando constantemente se a navegação e previsão de alcance estão sempre precisos.
Os fabricantes de células para pacotes de baterias dos VE têm feito grandes avanços nestes componentes, de modo que, ainda que eles usem atualmente muitas diferentes tecnologias de química, tanto a capacidade (Ah/kg), quanto a densidade de energia (Wh / kg) da bateria de íon de lítio tem aumentado consideravelmente. Eu creio que ambas essas grandezas aproximadamente dobraram nos últimos 12 anos, quando os VEs Nissan LEAF de primeira geração chegaram ao mercado com seus pacotes de bateria de apenas 24 kWh.
Todavia, fato é que todo esse desenvolvimento vem ocorrendo sob grande pressão: por um lado há a ansiedade por autonomia e, por outro, há também uma forte política de agressividade comercial por parte dos fabricantes por conta de haver concorrência entre eles dentro de um mercado em contínua expansão. Muitas vezes, poder declarar 10 km a mais na autonomia pode fazer toda a diferença entre vender os VEs, ou perder as vendas para as empresas concorrente.
Deste modo, a ansiedade por autonomia tem servido de alimentação para uma outra ansiedade: a ansiedade dos fabricantes por atender logo as demandas maiores dos potenciais motoristas de VEs.
Um problema que eu, particularmente, tenho observado, é que essa ansiedade dos fabricantes em atender urgente (e a qualquer preço) as demandas da ansiedade de autonomia dos proprietários e motoristas, pode estar pressionando de modo excessivo os seus departamentos de engenharia, e isso pode estar levando a alguns erros. Um dos erros que mais possivelmente possa estar ocorrendo é o Abuso do Estado de Carga (abuso do SoC, sigla para State of Charge, em Português, Estado de Carga, uma grandeza relativa às baterias), fazendo as células de íons de lítio trabalhem muito criticamente próximo do limite superior de segurança do SoC.
Os riscos associados a falhas de baterias e células de íon de lítio dependem de vários fatores, incluindo produtos químicos específicos, design de eletrodos, fatores de forma de célula e bateria, qualidade de fabricação e estado de carga (SOC).
Esses fatores determinam a estabilidade química e térmica, bem como os modos de degradação e falha. Dependendo do tipo e do conteúdo de energia das células e baterias, pode ocorrer fuga térmica, incêndio e explosão, e gases tóxicos podem ser liberados, o que pode levar a uma perda significativa de propriedades e vidas em casos extremos. Gases perigosos e tóxicos, como carbonatos, hidrogênio, benzeno, monóxido de carbono e fluoretos podem ser liberados de baterias danificadas ou com defeito.
Os mesmos fatores que determinam a estabilidade técnica das baterias, são os que, posteriormente, determinam também o desenvolvimento da confiabilidade do produto por parte dos usuários e consumidores dos produtos que as agregam. Veja os recentes casos em que proprietários pedem indenização à Tesla por alteração de software de gestão da bateria em pós venda, e também o caso do novo recall da GM para o Bolt EV, para proceder em oficina o mesmo tipo de serviço, e entendam que, quando nem mesmo as grandes montadoras estão livres desse tipo de erro, isso pode afetar a confiabilidade das baterias dos VEs no mercado como um todo.
Baterias mais seguras
Mesmo em altas temperaturas, nem todas as baterias testadas por Paul Shearing e sua equipe falharam – algumas tinham recursos internos de segurança que ajudaram impedir a reação perigosa. Das que falharam, as baterias com suportes internos permaneceram intactas até a temperatura interna atingir 1.830 F (1.000 C). Nesse ponto, os materiais internos de cobre derreteram, levando à reação em cadeia descontrolada.
Mas as baterias sem esses suportes internos explodiram, provavelmente porque seus núcleos internos entraram em colapso, o que poderia ter causado um curto-circuito nos componentes elétricos internos, mostrou o estudo. A nova técnica fornece uma maneira de testar sistematicamente os recursos de segurança em baterias no futuro, disse Shearing.
Todavia, e quando a vontade das empresas fabricantes em apresentar novos lançamentos de VEs também pode pôr em risco a qualidade do produto por conta de Abusos Elétricos do SoC? Em suma, se você (assim como eu) crê que isso deveras possa estar a ocorrer, em suma, meros ajustes do software de gestão da segurança das baterias podem ser realizados, mas, contudo, relizá-los a posteriori dos projetos dos produtos, podem ser eventos deveras dramáticos para as relações cliente-fornecedor.
A Fuga Térmica em Baterias de Íons de Lítio
O evento da fuga térmica é uma reação em cadeia que pode ser dividida em etapas, mas, o importante aqui é apenas ressaltar que a reações em todas essas etapas são sempre dependentes do SoC. No entanto, não apenas o abuso de Soc, mas vários fatores influenciam a segurança das células de íons de lítio. Portanto, não se pode concluir que todos os projetos de células têm resultados benignos no mesmo SoC e abaixo dele sob condições não nominais.
O Estado de Carga (State-of-Charge - SoC) e a Análise de Tensão
O Estado de Carga (State-of-Charge - SoC) é uma estimativa sobre a quantidade de carga armazenada numa bateria, que é utilizada quando se discute o estado instantâneo de uma bateria em uso, ou seu estado atual quando ela se encontra guardada em armazenagem. A unidade de medida do Estado de Carga (SoC) são pontos percentuais (0% = vazio, 100% = completo), todavia, normalmente, SoC não pode ser medido diretamente mas, pode ser apenas, estimado a partir de outras variáveis de medida direta.
É importante observar que todas as células de íons de lítio, incluindo as células de íons de lítio contidas em nossos centros de energia móveis, são sensíveis à voltagem. Uma condição de baixa tensão prolongada dentro de uma célula de íon-lítio pode causar a dissolução de metais (principalmente cobre). O cobre se dissolve na solução eletrolítica em tensões de circuito aberto abaixo de ~ 0,7 volts. Este cobre dissolvido é plaqueado novamente dentro da célula após o carregamento subsequente e pode causar efeitos indesejáveis e quase certamente comprometerá o desempenho da célula ( por exemplo, baixa capacidade, ciclo de vida ruim, alta auto descarga).
Da mesma forma, a tensão elevada também pode causar a degradação das células de íons de lítio, especialmente em temperaturas ambientes elevadas. Quando uma bateria de íons de lítio é conectada a um carregador, o carregamento continua ao longo de um caminho prescrito até que um estado de carga (SoC) de 100% seja detectado pelo circuito que controla o carregamento. O carregamento é então encerrado e a bateria pode descarregar muito lentamente. É prejudicial para as células serem mantidas em 98-100% SoC por períodos prolongados de tempo (ou seja, mais de 10 dias) apenas armazenadas. É por isso que muitas células podem descarregar para cerca de 95% SoC ou menos antes que o carregamento seja reiniciado, mesmo quando conectadas a um carregador.
A natureza das células de íons de lítio é tal que a relação entre o estado de carga (SoC) e a voltagem é bastante plana em grande parte da faixa de descarga da célula. Uma curva típica de tensão de descarga é mostrada abaixo:
Quando se faz necessário retirar baterias com química baseada em Lítio de serviço, colocando-as para ser armazenadas, convém que elas sejam armazenadas a cerca de 40% de seu Estado de Carga (SoC), pois a experiência tem revelado que este nível minimiza a perda de capacidade relacionada com o envelhecimento da bateria de Li íons, mantendo a bateria em condições de funcionamento e permitindo a auto descarga por um bom período de tempo.
No entanto, ajustar-se a carga da bateria para o nível de SoC de 40% é algo difícil de ser realizado, porque a medida da Tensão de Circuito Aberto, entre os terminais da bateria, não se presta, muito bem, às estimativas de SoC, por causa da correlação não linear existente entre ela e o SoC. Na verdade, é uma meta declarada dos projetos de baterias que elas devam fornecer uma tensão o mais constante possível, não importando o SOC, o que torna este método de difícil aplicação.
Todavia, por falta de melhores métodos práticos, é mesmo a tensão em aberto entre os terminais da bateria (verdadeiramente "flutuante", sem carga presente) que termina por ser usada como um indicador para este fim. Assim, o SoC de uma célula Li-íon é de cerca de 50%, se a sua tensão em aberto está em 3.80V, mas ele cai para 40%, se a tensão da mesma célula varia, tão somente, para 3,75V. O método da tensão em aberto pode se tornar mais preciso, compensando a leitura da tensão com um termo de correção proporcional à corrente da bateria, e usando uma tabela de consulta de tensão de circuito aberto da bateria, que considere a temperatura.
Já, as curvas de tensão de descarga de Lítio-manganês e Lítio-fosfato são muito planas, com 80% da energia armazenada permanecendo neste perfil plano de tensão. Essa característica ajuda a aplicações que requerem uma tensão constante, mas apresenta um desafio em aferição do Estado de Carga (SoC). O método de tensão só indica carga completa e carga baixa e não pode estimar grande parte do meio tempo, com precisão.
Além do mais, devido a instabilidade térmica temporal da química da célula Li-íon, com a temperatura também desempenhando o um papel, deve-se permitir que as baterias de Li íons descansem por um período de 90 minutos a 4 h (dependendo do porte / quantidade de células / quantidade de módulos da bateria), após uma operação de carga (ou de descarga), antes de tomar a leitura da tensão para fim da estimativa de SoC, tempo necessário para permitir o equilíbrio eletrostático da química da célula.
O erro mais gritante de estimativa de SoC, baseado em tensão, ocorre, justamente, quando perturbamos a bateria com uma recente operação de carga ou de descarga, por que ao longo destas operações, ocorre da temperatura se elevar, e consequentemente aumenta a tensão de circuito aberto. Porém, quando a temperatura volta a baixar a tensão também é diminuída, e esse fenômeno se aplica a todos os produtos químicos em diferentes graus.
Ao se dispor baterias de Li-íons em armazenagem, elas estarão, de qualquer forma, por si só, se conduzindo ao envelhecimento. Entretanto, regular o SoC, e também a temperatura do ambiente de armazenamento, podem ajudar a minimizar tal envelhecimento.
A tabela a seguir apresenta o caso específico de bateria de Íons de Lítio de tecnologia Óxido de Lítio Cobalto (LCO), comumente usada em produtos de consumo, disponibilizada para armazenamento, comparando duas situações diferentes de SoC (40% e 100%), sob quatro diferentes condições de temperatura de ambiente de armazenagem. Os dados obtidos referem-se ao que chamamos de "capacidade de recuperação", que é definida como a capacidade efetivamente disponível da bateria, após um período de tempo sendo armazenada (no caso, 3 meses) de recuperar sua carga completa nominal:
- Temperatura AmbienteÓxido de Lítio Cobalto (LCO)(Após de 3 meses guardadas)40% de Carga100% Carga0°C25°C40°C60°C98%96%85%75%94%80%65%60%Fonte: http://batteryuniversity.com/
A tabela deixa evidente que a armazenagem dessa bateria sob condições que combine elevada carga presente na bateria, com elevada temperatura no ambiente, é algo extremamente prejudicial à bateria (após 3 meses sob esta condição, a bateria conseguirá recuperar apenas 60% de sua carga nominal ao final de uma recarga completa).
Este tipo de perda, além de irrecuperável, é cumulativo, de modo que, tanto elevadas temperaturas ambientais, quanto máxima carga, explicam o encurtamento da vida esperada para a bateria, e isso vale, não apenas para todas as baterias baseadas em lítio, como, de maneira geral, também para qualquer outra bateria (qualquer tipo de tecnologia de energia química).
Ligações Externas:
Safety of Lithium-Ion Cells and Batteries at Different States-of-Charge;
Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements;
Effects of heat treatment and SOC on fire behaviors of lithium-ion batteries pack.
Nenhum comentário:
Postar um comentário