Mostrando postagens com marcador Hub Motor. Mostrar todas as postagens
Mostrando postagens com marcador Hub Motor. Mostrar todas as postagens

sexta-feira, 13 de maio de 2016

Unidade de Acionamento de E-Bikes Pedelec e Potência sob Demanda - Parte 3/3


Nesta postagem nós trataremos, mais especificamente, da Frenagem Regenerativa, além de, evidentemente, de abordarmos, em maiores detalhes o Sistema Mid-Drive de montagem do motor, que são os assuntos a dar continuidade a partir do ponto onde paramos na postagem anterior.

Contudo, antes de tratarmos de frenagem regenerativa, que é um assunto um pouco mais complicado, convém falarmos, também, simplesmente de frenagem das e-bikes, coisa que nós ainda não abordamos, em detalhe em nenhuma das séries de postagens anteriores.

Quem viu a imagem de um controlador de e-bike que é produzido pela gigante chinesa Focan Eletronic Factory, que foi mostrado na postagem imediatamente anterior, pôde perceber, entre o complexo emaranhado de fios com conectores que saem da caixa dele (pela via dos quais o controlador se conecta às várias partes restantes do sistema elétrico da e-bike) dois conectores que, em especial, estão denominados como "Brake Signal High" e "Brake Signal Low / Reverse"

Pois então, esses conectores são devidos para se ligar ao controlador aquilo que são chamados de E-Bike Brake Sensors (sensores de freio da e-bike), ou seja, nada mais nada menos do que dois interruptores, cada um deles associado a um dos manetes de freio (dianteiro e traseiro) da e-bike. Assim, manetes de freio toda bike tem, mas, manetes de freios com sensores, isso é coisa das e-bikes.

Não obstante, é digno de nota que um equipamento de sinalização luminosa de segurança já vem se popularizando mesmo para bicicletas regulares, sob a denominação do tipo "Lanterna Luz De Freio Seta Buzina 8 Sons Kit Segurança Bike", sendo que o mesmo contém um sensor de acionamento de freio, o qual poderia, sim, ser adaptado para a funcionalidade necessária das e-bikes, contudo, para a devida segurança, é requerido sensores de freio para ambos: traseiro e dianteiro (enquanto tal Kit, embora sendo interessante e barato, só apresenta um único sensor, e que se presta, apenas, para o sistema de acionamento por cabo).


Os sinais providos por tais interruptores servem para informar ao controlador que o ciclista está acionando um (ou ambos) dos manetes de freio. O controlador precisa se informado quando o ciclista aciona algum freio a fim de que ele tome as devidas providencias necessárias. A providência mínima necessária é, simplesmente, o controlador cortar o fluxo de energia para o motor, enquanto algum manete de freio permanecer acionado pelo ciclista.

Acontece que, quando se faz a conversão de uma bicicleta regular para e-bike, os manetes de freio originais existentes nela não permitem, facilmente, a adaptação dos interruptores que servirão como sensores. Não obstante os esforços de alguns que, de fato, conseguem fazer tal adaptação engenhosa sobre os manetes originais, existe no mercado a oferta de conjuntos completos que incluem manetes novos já com os devidos sensores montados no lugar e com toda o cabeamento necessário, adequado para simplificar o retrabalho da conversão bicicleta  e-bike.

Alguns desses conjuntos ofertados podem incluir, inclusive, cabeamento para conexão do acelerador (ou mesmo o próprio elemento acelerador agregado ao conjunto) que é requerido para os casos de e-bikes tipo potência sob demanda, contudo pedelecs não requerem isso e, assim, existem conjuntos específicos para as pedelecs,

Manetes de freio para a substituição com sensores de freio (interruptor para o cortar a alimentação do motor) tipo Hall com conector e cablagem padrão Bafang.
Neste ponto, alguém poderia dizer: Ah, mas quando eu aciono algum freio, eu solto o acelerador (ou paro de pedalar - no caso das pedelecs). Só isso já garante que o controlador irá levar a potência entregue ao motor a zero!

Sim, garantiria, porém, ficando na dependência de que você realmente o faça sempre assim. Todavia, você pode querer burlar esse comportamento (correto), ou mesmo, acidentalmente fazê-lo, de modo que os sensores associados aos manetes de freio são uma real garantia de que você não conseguirá (facilmente) aplicar potência ao motor com algum freio estando acionado.

Além do mais, a resposta do controlador a ativação dos sensores de freio são mais rápidas, gerando uma interrupção total do fluxo de energia mais abruptamente do que simplesmente desacelerando ou deixando de pedalar. Enfim, sensores de freio são para maximizar a segurança da operação.

Ao fazer um retrofit, caso você resolva adquirir um kit de sensor de freios (conjunto completo) você deve ter em mente qual o tipo de sistema de freio que você já tem (se é por cabo ou se é hidráulico) pois os kits diferem quanto a isso. Deve considerar, também, o padrão e a qualidade dos elementos sensores, dos cabos e conectores  (para não chorar depois). Os mais simples e baratos podem incluir, até mesmo, interruptores elétricos bem simples (do tipo push button 1) e conectores que têm, ambos, um baixo índice de proteção, o que pode significar que umidade e sujeira entrarão com o tempo.

Já, os sensores do tipo hall são muito melhores (exite, também, a possibilidade de emprego de sensor do tipo capacitivo, apesar da oferta dele ainda ser rara), pois, seus corpos são selados, com alto índice de proteção, e o imã associado a eles que fica exposto na parte externa são ímãs resistente à ferrugem para uso ao ar livre (ou, ao menos, devem ser). Melhores sensores costumam vir acompanhados de melhores cabos e melhores conectores (em e-bikes, conectores com elevado índice de proteção também são importantes).

Eu, particularmente, não trocaria os manetes (menos ainda se o sistema original for hidráulico) e adaptaria o sensor do tipo hall, simplesmente fixando as partes, externamente, com bons adesivos. As opções são muitas, mas, vejamos algumas imagens:

Acima, á esquerda um manete com sensor de freio tipo Hall com push button 1. Nas demais imagens, um sensor de freio Hall que pode ser utilizado em uma instalação sem a mudança dos manetes de freio.

Ao instalar o sensor de freio do tipo Hall, prender a extremidade do sensor tão perto do manete quanto possível e o imã sobre o manete bem próximo do sensor. Quando a manete de freio é puxado, o imã vai afastar-se do sensor e o controlador é informado que deve cortar potência do motor, quando a manete é liberado e o ímã vem para perto do sensor, o controlador é informado que deve ligar a potência de volta ao motor. É por isso que é melhor que você instale e teste um sensor de cada vez, porque se você tem um segundo sensor ligado, mas não devidamente ajustado em proximidade suficiente para com o imã, o motor será cortado, e você não poderá estar usando o operação do motor para fazer uma instalação fácil e permite-lhe afinar a distância desejada entre o ímã e o sensor.

Quando tiver concluído a instalação e teste do primeiro sensor, em seguida, conecte o segundo sensor e repita. Adesivo 3M adequado é ideal, mas cola quente funciona muito bem para esta aplicação e permite uma melhor instalação ao montar superfície não é plana ou contornos. O sensor e ímã também pode ser instalado no lado inferior da alavanca do travão para um visual mais limpo. Certifique-se de prender o cabo do sensor depois de conectado, para, no caso de ele ser desconectado ele ser impedido de ficar pendurado e enredar-se nos raios da roda dianteira.

Quanto a maneira de ligar o conector deles ao controlador, tenha cuidado, pois, controladores genéricos variam quanto aos sistemas de conectores que eles apresentam (ou seja, não há um padrão), enquanto outros (como a Bafang, por exemplo) utilizam sistemas proprietários de cabeamento e de conectores. Entre os controladores genéricos eu encontrei, basicamente, três versões de forma de conector para os sensores de freio:
  • Um único conector apenas, com um par de fios: isso está presente em certos controladores de menor porte, e, em geral, corresponde a uma entrada de sinal digital que é ativa em nível baixo (nível lógico 0, ou seja, com a entrada levada ao potencial de GND) e costuma ser denominada "Brake Signal Low" (ou Brake Level Low, ou coisa semelhante).  Se são dois os seus sensores (freio dianteiro e freio traseiro), neste caso você precisará fazer a interligação dos seus dois sensores em paralelo, antes de conectá-lo aos conector do controlador. Os dois fios presentes no conector do controlador são o "SINAL" e o "GND" (GND costuma ser o fio de cor preto, enquanto o SINAL é o outro fio (sem cor padronizada), que é a entrada que avisa a atuação do freio ao controlado). Se os seus sensores forem do tipo eletrônico (muito populares, atualmente), tal como Sensor Hall ou Sensor Capacitivo (e não um simples interruptor eletromecânico), você precisará acrescentar um fio extra que, neste caso, é o positivo (Vcc, em geral de 5 V), por fora;
  • Dois conectores com um par de fios em cada um: este é, de fato, o arranjo mais comum e que não causa muita preocupação, pois, é simplesmente para ligar um sensor para cada um dos conectores. Essa configuração as vezes pode mudar uma outra forma que acomoda todos os 4 fios em um mesmo conector de 4 terminais, ou, numa outra forma em que apenas dois fios saem do controlador, mas eles derivam para dois conectores de dois terminais cada (conectores ligados em paralelo). Se constatar que precisa trocar o modelo do conector para compatibilizar fisicamente a conectividade, você pode optar fazer um cabo extensor curto, ou, sendo possível, trocar do lado que o conector empregado for que menor qualidade (mas evite o costume de emendar fios e isolar com fita isolante).
  • Dois conectores, um com um par de fios e outro com apenas um único fio: isso foi elaborado para prover versatilidade, mas, pode acabar por complicar para alguns montadores. É neste caso que aparecem as designações: "Brake Signal Low" (conector com dois fios) e "Brake Signal High" (conector com apenas um fio). Para complicar ainda mais "Brake Signal Low" as vezes  muda de designação para "Brake Signal Low / Reverse", e, ai, o conector passa a ter três fios (como visto na figura ao lado).
Como eu já havia discursado na postagem anterior, a grande maioria dos controladores (e outras partes todas do sistema elétrico das e-bikes) made in China (até mesmo os produtos das grandes e líderes) são pobremente documentados, o que faz com que seus adquirente precisem se tornar em verdadeiros desbravadores para desvendar e entender como ligar as partes todas, como e quando os recursos ou funções dos controladores agem sob os efeitos da ativação de cada entrada que eles dispõem, e como, exatamente, ativar cada uma dessas entrada, dispondo de parcas informações (que acompanham o produto após adquirido, sendo que, na hora da escolha, isso é ainda pior), e sem que haja padrões (até mesmo para as nomenclaturas).


Diante dessa tamanha "balbúrdia em conectividade", muitos podem "pedir para jogar a toalha" e preferir algo bem mais "limpo e enxuto", tal como o que é mostrado abaixo:


Acontece que o Kit mostrado acima (The E-BikeKitTM apenas parcialmente) apesar dele ser, de fato, fácil de conectar os cabos dos sensores de freio e, de você pode, até mesmo, poder adquirir as partes mostra nele em separado, te coloca na situação de você ter que adquirir, no mínimo, tudo o que está sendo mostrado na figura (o controlador e o cabeamento, além dos manetes de freio com sensores), só para poder resolver o problema de conectividade dos cabos dos sensores de freios. Isso te colocando em outra enrascada, pois, o cabeamento todo, para conectar as demais partes, é um sistema de conexão proprietário, o que te obriga a comprar o Kit todo, que, alias, por acaso vem sem a bateria  (de modo que você terá que preocupar com a conectividade dela, também).

Fato é que existem diferentes ofertas de kits para e-bikes com sistema de cablagem e conexão proprietários (ou quase proprietários), sendo produzidos em vários cantos do mundo, sem que haja compatibilidade de conectividade entre eles, e, sem que cada um deles próprios sejam completos, o que leva alguns montadores de e-bikes engenhosamente mais habilidosos a desejarem agregar algo extra a eles, mas encontrando dificuldade de conectividade e de falta de documentação satisfatória para fazer isso.

Além disso, apelar para kits com sistema de cablagem e conexão proprietários pode não ser (e de fato não é) a solução mais barata, e te deixa limitado. Além do mais, olhando bem, alguns conectores oferecidos (como, por exemplo, os da imagem anterior) nem me parecem, assim, tão bem protegidos.

Diante disso, os genéricos podem te levar a alguma vantagem, pois, eles são oferecidos em grande variedade e te dão margem para criar, elaborar e testar arranjos de conexão com diversas partes, diferentes tipos de sensores, etc, não pela documentação deles que, como foi dito, costuma ser insatisfatória, mas, pelo simples fato que você não precisará vandalizar conectores e cabos que foram montados para serem inviolados.

Repare no diagrama de conexão apresentado ao lado: ele é associado à documentação de um controlador de e-bike fabricado pela Shenzhen Vire Silicon & Technology Co., Ltd, Empresa de Hong Kong cujo Foco Principal tem sido o de desenvolver e fabricar produtos para o mercado de decodificadores MP3 / MP4 / MP5 (controlador de e-bike é só "um lance a mais"). Repare que a conexão de freio te apenas um fio. Isso é tudo o que você pode encontrar na documentação do produto que é oferecida (e nada mais).

E olhe que esse controlador, VIRE-24-48V-2400W-01C, não é de pequeno porte nem um qualquer. Ele integra 24 MOSFETs para realizar os chaveamentos de intervalos (60° ou 120°) e de PWM da Potência (e não apenas 6 MOSTETs, como os controladores mais comuns) e tem características alegadas como adequadas scooters e triciclos (elevada potência). Contudo, a documentação dele é parca. Não informando, sequer, como ligar um simples sensor de freio a ele.

Você poderia deduzir, obviamente, que por ser apenas um único fio presente ao conector, ele só pode ser o fio para entrada do SINAL. Ok, eu também creio que isso é algo lógico, mas, falando em lógico, qual será, então, Nível Lógico que causa a ativação de tal sinal de entrada? Alto ou baixo? "1" ou "0 "(isto é, conectando o fio de SINAL ao VCC ou ao GND)? Comumente existe ambos os casos em controladores genéricos. O que muitos acabam fazendo é, simplesmente, aplicar a "tentativa e erro", experimento as duas formas de ligação e observando o resultado. Isso é horrível!

É, deveras, uma pena a pobreza de documentação que eles costumam apresentar (independente deles não terem, também, uma padronização). Então vamos "decifrar":
Esquema de ligação entre um Sensor Hall e a entrada Brake Low Level
(ou Brake Signal Low) do Controlador
  • Brake Low Level (ou Brake Signal Low): Apresenta apenas 2 fios no conector que vem do controlador: Um fio é "Sinal" e o outro é "GND". Com essa entrada do controlador estando em aberto (ou não ligada, ainda, a nenhum sensor), seu estado normal (que pode ser medido entre os dois fios,  "Sinal" e "GND" presentes nesse conector) é "nível alto" (nível lógico 1 ou uma tensão próxima equivalente a do VCC interno do controlador, normalmente +5 V). Para que o controlador entenda que o freio foi acionado, ela precisa ser levada a "nível baixo" (nível lógico 0 ou GND, dai vem o termo "LOW" associado ao nome que a designa). A ativação dessa entrada (que resulta na ação do controlador cortar a energia para o motor), pode se feita, então, simplesmente interligando os dois pinos do conector ("Sinal" e "GND"). Entretanto, fato é que um sensor, seja ele do tipo Hall ou do tipo Capacitivo 2, apresenta 3 fios: "Vcc", "Sinal" e "GND", de modo que isso te obriga a ligar um fio extra ao conector cabo elétrico do sensor, que é o fio do Vcc (que serve para prover alimentação ao circuito eletrônico que existe interno ao invólucro do sensor).
Quando se fala em sensores para emprego em máquinas industriais, costuma-se empregar as designações Sensor NPN e Sensor PNP 3 para diferenciar quanto a dois tipos possíveis de chaveamento da saída dos sensores. Contudo, no contexto das e-bikes, eu ainda não vi tais termos sendo empregados, e ao que me parece, se não todos mas a grande maioria dos sensores empregados devem ser do tipo NPN, ligados como mostrado acima.(lembrando que, as cores dos fios também não segue o padrão industrial). Contudo, caso opcionalmente se empregue sensores do tipo PNP, então você precisará conectá-los a outra entrada:
  • Brake High Level (ou Brake Signal High): Apresenta apenas 1 fios no conector que vem do controlador: o fio de "Sinal", apenas. Com essa entrada do controlador estando em aberto (ou não ligada, ainda, a nenhum sensor), seu estado normal é "nível baixo" (nível lógico 0 ou uma tensão próxima equivalente a do GND). Para que o controlador entenda que o freio foi acionado, ela precisa ser levada a "nível alto" (nível lógico 1 ou Vcc, dai vem o termo "HIGH" associado ao nome que a designa). A ativação dessa entrada , pode se feita, então, simplesmente interligando ela ao Vcc.
Contudo, há ainda, outra diferença quando se usa essa entrada, que vai além da questão do tipo de chaveamento de saída PNP / NPN dos sensores:

Ativar essa entrada não resulta na ação do controlador apenas cortar a energia para o motor, mas, sim, dele realizar uma efetiva frenagem elétrica do motor, muito mais brusca e firme, fornecendo a suficiente potência de travagem para trazer a e-bike a uma parada completa rapidamente, mesmo sem usar os freios da bicicletas em tudo, e fazendo o motor resistir à rotação da roda.

Isso é feito, porém, sem significar, necessariamente, que esteja havendo alguma efetiva frenagem regenerativa (pelo menos, não nos controladores que eu pude estudar, testar e decifrar).Deste modo, acabamos descobrindo a que a diferença entre Brake Low Level (ou Brake Signal Low) e Brake High Level (ou Brake Signal High) não é, apenas, quanto a questão do Nível Lógico para a Ativação  (ligar ao VCC ou ao GND para ativar) desses sinais, mas, sim,. que a ativação deles resultam, respectivamente, em ações do controlador que corresponde funções de frenagem bastante distintas entre si.

Outro fato importante é que se você estiver usando um motor do cubo com redutor (conforme visto na postagem anterior) dotado de Roda Livre (Freewheel ), então este freio elétrico (frenagem regenerativa) não funcionará, porque o que ele faz é, essencialmente, apenas o travamento do rotor do motor no lugar. Devido à roda livre, mesmo com essa ação, o resto da roda continuará a girar, não sendo, o resultado, diferente do que, simplesmente, cortar a potência do motor, deixando-o a mercê da inércia.
  • Brake Signal Low / Reverse: Essa designação aparece somente nos casos de controladores de maiores potências (acima de 1000 W). O conector tem três fios, onde, além, de haver os dois fios referentes Brake Signal Low (conforme foi descrito acima), há, ainda, a adição de um terceiro fio que é associado a entrada de função Avante / Reverso (ou denominada, simplesmente, Reverse) que é algo se aplica para os casos como o dos triciclos, por exemplo, que podem se beneficiar de ser capaz de alternar seus sentidos de movimento entre para frente e para trás. Mantendo esta entrada em aberto, ou impondo a ela nível alto (Vcc), temos o sentido de movimento Avante (que é o padrão). Já, colocando tal entrada em nível baixo (GND), estamos selecionando o sentido de movimento reverso.

Frenagem Regenerativa:


Frenagem regenerativa já foi discutido aqui neste blog em várias postagens anteriores, contudo, não olhando para os veículos elétricos ultraleves, as e-bikes, mas, sim, sempre para veículos leves maiores, os carros elétricos. Alias, lançar o olhar para as tecnologias especificamente pertinentes às e-bikes tem sido uma grata novidade, e um desafio, para este autor, que ama aprender coisas novas.

Frenagem regenerativa é muito comum em carros elétricos, algo praticamente de emprego mandatário, mas, nas e-bikes, porque elas precisam se manter como produtos dentro de faixas de preços finais ao consumidor bem mais reduzidas para se manterem competitivas, o emprego de dispositivos que provejam tal funcionalidade ainda é muito raro.

Frenagem regenerativa significa, antes de tudo, parar de chamar o motor elétrico de "motor" e passar a chamá-lo de "máquina elétrica", pois, no contexto dos veículos com frenagem regenerativa, a "máquina elétrica" opera em ambos: tanto como no modo motor, quanto como no modo gerador.

A máquina elétrica se comporta como gerador exatamente quando ela opera durante um Regime Transitório de Desaceleração (isto e, na frenagem), efetuando uma força contrária ao da aceleração, ajudando no esforço de parar o veículo e gerando de eletricidade a partir do conjugado de frenagem.

Para muito mais detalhes veja também: Freio Regenerativo (Sistema de Recuperação de Energia Cinética). Entender o que é apresentado nesse outro artigo é altamente recomendável, pois, facilita, e muito, entender o que passamos a apresentar, em seguida, aqui.

A energia elétrica gerada pela máquina elétrica durante a frenagem pode ser (e, em muitas aplicações é) realimentada de volta para a bateria, o que aumenta sua eficiência energética do sistema e aumenta a autonomia do veículo. Contudo, atenção, pois os manuais de controladores de fabricantes realmente sérios trazem a seguinte advertência

"Apesar da Regeneração ter efeito de travagem, ela não substitui a função de um freio mecânico. Um freio mecânico é necessário para parar o veículo, sempre. "Regen" ajuda, mas não é uma característica de segurança! O controlador pode inibir a regeneração, sem aviso, tanto para proteger as si mesmo, como para proteger a bateria (Por isso, ele não tem como objetivo proteger a operação da condução, pela qual a atuação do ciclista é responsável)."

O que determina se em um sistema opera motorizado ira haver regeneração, ou não, não depende, em nada, do motor que é utilizado, pois, qualquer máquina elétrica tem a habilidade de regenerar. odo motor tem habilidade regenerativa, ou seja, construtivamente, todos os Motores são, de fato, Máquinas Elétricas (e essa é a denominação até mais adequada para se usar no contexto de frenagem regenerativa) que foram concebidas para operar em ambos os modos: Modo Motor e Modo Gerador:
  • Se a Máquina Elétrica (motor) recebe energia elétrica, ela converte para energia mecânica (e está operando, de fato, no modo motor), porém;
  • Se a Maquina Elétrica recebe energia mecânica (se você girar o eixo dela, externamente, de alguma forma), ela converte para energia elétrica (e, portanto, está operando no modo gerador).
Contudo, dependendo de como a máquina elétrica (motor / gerador) é montada em relação ao sistema de transmissão da bike, será possível, ou não, haver regeneração, ou seja, o motor poderá ou não ter a habilidade de operar como gerador por receber da roda da bike a energia mecânica que ela pode doar ao motor (fazendo-o operar como gerador). Isso pode ser interessante, principalmente diante daquela quantidade enorme de energia que ese dispõem, quando a bike está a descer por um declive.

Se ao descer por declives o motor estiver girando por causa do giro da roda, então a regeneração, de fato acontece e ela pode ser aproveitada. Esse é o caso de:
  • Todos as e-bikes que empregam Motor do Cubo (Hub Motor) sem redutor, ou seja, que não roda livre, os chamados de acionamento direto (Direct Drive). Isso realmente permite a regeneração, e ela pode ser aproveitada (ou não, pois ainda ficamos na dependência do controlador permitir).
Contudo, tanto para o caso de e-bikes que tem seus motores instalados numa montagem Mid-Drive (acionando direta ou indiretamente o eixo da pedaleira), quanto para o caso versões de Motor do Cubo que contenham Redutores (Geared Hub Motors), estes não serão capazes de efetuar a regeneração 4, por conta de que seus motores permanecem parados, enquanto a e-bike desce por um declive, e sua roda gira livre (roda livre) não requerendo mais força de tração e, portanto, nem se está mais pedalando.

Não obstante, mesmo estas (Mid-Drive e Geared Hub Motors) versões de e-bike poderiam, sim, ser pensadas para serem dotadas, também, de controladores que possuam a função de regeneração, a fim de que, por exemplo, atender aos casos em que os ciclista também usem a e-bike para exercitar-se sem sair casa.

Muitos ciclistas (de modo geral, não apenas de e-bike) estão adotando essa prática de exercícios sendo realizada pela associação da com um simples rolo treino (de exercício) de bike, tal, como mostrado na foto  ao lado. Este rolo de treino poderia utilizar a regeneração como "efeito de carga" para ser empregada no treino, ao mesmo tempo em que ele pode encher de energia a bateria da própria e-bike, ou mesmo outra bateria qualquer (compatível em tensão) que seja ligada, externamente, até os terminais de conexão de bateria do controlador da e-bike.

Esse rolo de treinamento é algo muito simples e barato: ele faz, simplesmente, com que o ciclista pedale movendo a roda bike sobre o rolo (que não apresenta resistência considerável alguma), que é suportado há uma bem pequena elevação com relação ao solo (o que equivale a pedalar sobre um declive bem suave). Contudo, desportistas com mais elevado grau de "energia humana" decerto sentirão falta de uma maior carga para a realização de seus exercícios.

Para resolver isso, existem outros tipos de rolos semelhantes a esse, porém, que agregam ao seu eixo um Freio de Partículas Magnéticas, que não apenas permite se impor um Conjugado Resistente ao eixo do rolo, como, também, permite ajustar a intensidade desse conjugado resistente. Acontece que estes equipamentos mais sofisticados custam n vezes mais caros do que os rolos simples, ao passo que se a bicicleta for uma e-bike, isso não justifica, pois ela mesma pode prover o conjugado resistente para o treino, e ainda ter a capacidade de regeneração aproveitada..

Isso pode ser provido por se desligar o fornecimento de energia para o motor, por meio, por exemplo, de se emitir um "falso informe" do sinal Brake High Level (ou Brake Signal High) para um controlador. Eu digo "falso informe", pois, não se estaria acionando manete de freio algum (afinal, o ciclista estará a pedalar), mas, sim, emitindo tal sinal a partir de uma simples chave elétrica que é manobrada pelo ciclista para poder ativar o sinal Brake Signal High para o controlador, mantendo o ativado o tempo todo, enquanto o ciclista estiver pedalando, realizando o seu treino.

Na aplicação proposta, não se trata, especificamente, de regeneração, mas sim, de geração. O seu motor estará, o tempo todo que durar o exercício, operando como gerador, e girando no mesmo sentido de giro da tração que é requerida (nenhum ciclista não precisa de assistência do motor para se mover sobre o tal rolo).

Assim, seja regeneração, ou geração, o que muda é só o nome. Contudo, será que, com isso, tal geração pode ser, efetivamente, aproveitada para recarregar a bateria (da e-bike ou outra, externa). A resposta tanto pode ser sim, quanto pode ser não, pois ela depende da "arquitetura" (hardware e software) que é adotada no controlador que está sendo empregado (ou seja, se o tal controlador é, ou não, dotado da função REGEN).

Quanto aos controladores, antes de tudo é preciso entender que, até mesmo os de arquitetura mais simples, são dotados de (alguma) capacidade regenerativa, pelo simples fato de que cada um dos MOSFETs de sua ponte trifásica apresentam, internamente aos encapsulamentos deles, um diodo retificador, o qual é ligado de modo a poder conduzir no sentido inverso ao da condução do transistor (corrente do dreno para a fonte do MOSFET).

Fato é que, os diodos internos aos MOSFET, só conseguem conduzir, efetivamente, no caso do valor do FCEM (Força Contra Eletro Motriz) 5 gerada pelo motor (perdão, máquina elétrica operando como gerador) conseguir ser maior do que a tensão da bateria (tensão presente no barramento CC).
Comportamento da corrente produzida pela FCEM (corrente de regeneração) num dado instante. Neste instante, as bobinas A e B estão , respectivamente, em seus picos positivo e negativo de FCEM, de modo que elas são as responsáveis pela condução, enquanto os diodos em condução são os associados ao MOSFET T1, na parte superior da ponte, e ao MOSFET T5, na parte inferior da ponte. A corrente entra pelo polo positivo da bateria, provendo carga de energia para a mesma.
No entanto, uma vez que um motor pode estar classificado para XX volts, e a tensão no terminal da bateria pode, também, ser dos mesmos XX volts, para gerar XX volts a partir do motor (perdão, de novo, máquina elétrica operando como gerador) ela deve girar à sua velocidade nominal (em rpm). Já, para gerar um maior tensão, rotação também superior será necessária.

Assim, a não ser que a bateria esteja muito descarregada, ao se pedalar, mesmo com bastante energia, somente com a arquitetura regular dessa ponte de MOSFETs, que é o que existe na maioria dos controladores (ou controladores mais simples), muito provavelmente, não se conseguirá fazer a FCEM do motor suplantar a tensão dos terminais da bateria, de modo que não se obtém regeneração, efetivamente.

Por outro lado, tal coisa já é em algo bom, pois, ela ajuda a evitar que a sua bateria se descarregue demais, pois, com você pedalando, ao menos a carga da bateria será mantida acima de um certo patamar seguro (que depende da potência das sua pedalada). Por outro lado, alguns controladores possuem uma arquitetura diferente, que envolve eles serem dotados de mais circuitos de eletrônica de potência e, também, de softwares de controle mais complexos.

A configuração da ponte de MOSFETs trifásica pode ser estendida port adicionar um circuito de freio simples, baseado em SCR / IGBT. Todavia, apesar disso tornar hábil a frenagem elétrica, que pode ser reostática (jogando a energia fora, para cima de uma resistência), tal incremento não habilita para que haja aproveitamento da regeneração.

É necessário o incremento do circuito de eletrônica de potência e do software de controle, de modo que torne possível uma maneira de aumentar a FCEM gerada pelo motor. Somente assim será possível, mesmo operando em velocidades mais baixas (quando a geração / regeneração é de baixa intensidade), o motor pode operar, de forma adequada, no modo de regeneração, como freio e propiciar, também, o aproveitamento adequado da energia regenerada de volta para a bateria.

Para prover isso construímos um Conversor CC/CC de Elevação (também chamado de Conversor Elevador de Tensão ou, Conversor Boost, ou, ainda, Conversor Step-Up) junto da ponte de MOSFET trifásica. Conversor CC/CC elevador envolve, tipicamente, além de elementos reativos (indutor e capacitor, fundamentais ao seu funcionamento), também elementos chaveadores (MOSFETs), para, pela variação de largura dos pulsos (ciclo de trabalho) de PWM, a tensão de saída possa ser elevada para diferentes magnitudes, adequando-se, assim, ao nível ideal de tensão para recarregar a bateria.

O PWM pode ser inserido em um de controlo PID com o objetivo de ser alcançado um controle para uma força de frenagem constante,  onde a malha de PID tentará manter uma força de frenagem constante para diferentes velocidades do motor, visando o usuário obter uma resposta linear da força de travagem. Nesse caso, o sistema requer um sensor de freio que seja analógico (em geral, fornecendo sinal variando de 0 ~ 5 V).


Notas:


  1. Sensor Push button, mas não necessariamente do tipo interruptor eletromecânico, podendo ser, inclusive, com uma alavanca de atuação exterior empurrando (movendo), internamente, um pequeno imã. O imã, por sua vez, aciona um sensor de efeito hall (montado internamente). A alavanca de atuação retorna a posição de repouso por mola (que existe, também, internamente. Isso dá ao sensor o aspecto de um simples interruptor eletromecânico, mas, ele é, de fato, um sensor do tipo hall.                                                                                  
  2. Existe, também, a possibilidade de se empregar Sensor do tipo Capacitivo. Esse tipo de sensor permite detectar a ativação do freio por meio da detecção do movimento interno do cabo de acionamento. Fácil de instalar e pode
    ser montado em qualquer das extremidades (ou em algum local intermediário) do cabo do freio da bicicleta tornando desnecessário mudar manetes do freio de sua bicicleta quando você converter bicicleta para um e-Bike. Basta enfiar o cabo de freio através do corpo do sensor. Contudo, existe uma posição correta para montagem dele em relação ao sentido de movimento do cabo de freio e, por isso, existem dois modelos com relação ao lado que sai o cabo dos fios condutores elétricos. O conector desse que é mostrado na figura ao lado é padrão de cablagem Bafang (mas existem outras ofertas de produtos similares com diferentes tipos conectores como, por exemplo, o HWBS-1 king meter). Eles também são conhecidos, genericamente, pela sigla HWBS ( Hidden Wire Brake Sensor).                                                                                    
  3. Se o sensor for do tipo de saída NPN, o sinal de saída dele, quando ele estiver ativado é "baixo", ou "nível lógico 0". Nesse modelo, a ligação da carga (que equivale à entrada do controlador) deve ser feita entre o sinal e o positivo (VCC). Já, se o sensor for do tipo de saída PNP, o sinal de saída dele, quando ele estive ativado é "alto", ou nível lógico 1". Nesse modelo, a ligação da carga (que equivale à entrada do controlador) deve ser feita entre o Sinal e o negativo (GND).                                                                                                                                                   
  4. Eu tão somente ouvi alguma breves referências a um Motor do Cubo com Redutor (Geared Hub Motor) que não fosse roda livre, mas, pelo que eu pude constatar, depois de algumas poucas aplicações, ele foi logo descartado, porque o arrasto das engrenagens e do motor era muito alto, enquanto a regeneração foi pouco significativa, ele se tornou impopular. As aplicações tratavam-se das e-bikes Giant new Twist modelos 1 e 2 (modelos de produção descontinuada) empregando Motor do Cubo com Redutor da Sanyo.                                                                                              
  5. FCEM é um acrônimo para o termo Força Contra Eletromotriz, que é um fenômeno elétrico associado à comutação do estado de condução em indutores, algo que é muito recorrente nos assuntos abordados neste blog. Vá para as NOTAS da postagem titulada "Motor CA Síncrono ou Motor CC Sem Escovas???" para ver a definição.


terça-feira, 10 de maio de 2016

Unidade de Acionamento de E-Bikes Pedelec e Potência sob Demanda - Parte 2/3


Um pouco mais sobre Controladores do Motor para E-Bikes tipo Pedelec e E-Bikes Power on Demand:


Se você tem acompanhado as nossas postagens anteriores de artigos sobre e-bikes até aqui, você já deve ter percebido que a tecnologia por trás dos sistemas elétricos das e-bikes não é algo tão simples. Deveras, por trás da descrição resumida de "um Veículo Elétrico Ultraleve dotado de bateria, motor, controlador e sensores", uma e-bike tem um bocado de partes interligadas, que envolvem uma gama de tecnologia ampla e diversificada.

Na postagem imediatamente anterior (Unidade de Acionamento de E-Bikes Pedelec e Potência sob Demanda - Parte 1/3) nós fechamos apresentando a imagem de um típico controlador para e-bike (um Controlador para E-Bike 36 V 17 A 350 W para Motor de Imãs Permanentes Sem Escovas). Tal controlador serve para atender aos requisitos de e-bikes do tipo Potência sob Demanda (Power on Demand, as e-bikes com manopla de aceleração, cujo controle do motor requer que o motor possua sensores Hall integrados ao seu corpo, além de sensores que detectam a ativação do freio - isso, no mínimo)

Contudo, o controlador específico que foi mostrado tem "um problema" que é o dele não permitir, opcionalmente, o controle sensorless do motor, uma característica que pode ser muito desejável para tornar a operação da e-bike mais versátil. Mas este não é o caso da maioria das demais ofertas de "controladores genéricos" para e-bikes potência sob demanda disponíveis no mercado.

Existe uma legião de fabricantes de controladores no mundo, tanto nos EUA, como na Europa, mas principalmente na China (sem mencionar outros polos de fabricantes). A escalada da eletrificação das bicicletas começou pouco antes de meados dos anos 90 e pegou a China em franco desenvolvimento de seu parque industrial de produtos de eletroeletrônica, concebido para ter uma forte capacidade de escala e custos de produção baixos.

Além do mais, a China já vinha de uma história com tradição de um elevado emprego de bicicletas e, assim, não é de admirar que a maior parte da produção mundial de e-bikes, e de peças e kit para conversão de e-bikes é realizada na China. Não obstante o fato que os custos com a mão de obra industrial chinesa venham crescendo, e a qualidade dos produtos melhorando gradualmente, os custos globais da cadeia produtiva tornam os produtos chineses muito competitivos.

Contudo, eu, particularmente, tenho aprendido que é complicado lidar com o fornecimento chinês, por conta de uma certa dificuldade de comunicação, alguma deficiência em assistência pós venda e, principalmente pela falta ou pobreza da documentação dos produtos. Uma boa documentação é o que pode te permite ir o mais longe possível, trabalhando sozinho, tanto na hora de realizar as avaliações para a escolha, quanto na hora do uso dos produtos.

O fato de não se ter, previamente à aquisição do produto, o acesso a uma boa documentação, faz com que você tenha que fazer verdadeiros malabarismos para ter um claro entendimento, até mesmo mesmo para um emprego mais trivial dele.

Produtos chineses são mal documentados, tanto por razões de contenção dos custos que documentar bem acarreta, quanto por receio de que os projetos deles sejam copiados por empresas concorrentes. Além do mais, o título de "produtos genéricos" cai bem justamente sobre eles, não apenas por que eles pretendem ser versáteis (coisa que acaba por se tornar difícil de se converter em vantagem pela pobreza da documentação), mas, também, (ao menos por enquanto) pela preferência do emprego de insumos de qualidade (e custo) inferior.

Existem empresas produzindo na Europa e USA controladores para e-bikes com alguma qualidade melhorada e, principalmente, como produtos muito bem documentados, mas, evidentemente, estes têm um custo muito maior do que os controladores chineses. Estes controladores  são bem mais caros, porém, eles são elaborados com insumos de qualidade superior, principalmente no que diz respeito às partes que ficam mais sujeitas à agressividade de agentes do meio ambiente, como, por exemplo, os conectores elétricos externos.

Como você já pode observar ao final da postagem anterior, controladores de e-bike têm uma grande quantidade de fios condutores saindo para fora da caixa do controlador, sendo ligados a uma série de conectores elétricos, que permitem a conectividade dele com partes como: a bateria que o alimenta, os diversos sensores que permitem o controle adequado, e com o atuador principal que é o motor.

Em veículos elétricos, notadamente nas e-bikes, a qualidade  dos conectores é determinante para a durabilidade do equipamento, pois, está associada ao Grau de Proteção IP para Equipamentos Elétricos que é requerido, e que pode ser alcançado. Níveis de classes de proteção IP ou grau de proteção IP são padrões internacionais definidos pela Norma IEC 60529 para classificar e avaliar o grau de proteção de produtos fornecidos contra intrusão, poeira, contato acidental e água.

Em se tratando de controladores para e-bikes, o ideal seria que, ambos, tanto a caixa do controlador, quanto os conectores empregados possam prover uma proteção de, no mínimo, grau IP 64, ou sejas, á prova de poeira e protegidos contra jatos potentes de água (tal como, por exemplo, as câmeras de vídeo de uso em áreas externas, onde chove. Ou será que eu não devo ter o direito de pedalar a minha e-bike debaixo de chuva tropical?).

Contudo, eu confesso que não tenho encontrado, em lugar algum, um fabricante que tenha se preocupado em dotar ambos, a caixa do controlador e os conectores de um grau tão alto de proteção. Alias, tente descobrir a informação sobre qual é o grau de proteção IP de um produto chines e, se você descobrir algo, me avise. Somente para controladores com potência acima de 1000 W é que se pode observar alguma aparente preocupação maior para com o grau de proteção da caixa dos controladores Made in China, ao passo, os conectores, continuam tão ruins quanto nos controladores de menor potência.

Já, quanto a questão da documentação, eu, particularmente, a considero-a grave e séria., pois, não há nada pior do que uma documentação pobre, quando se está lidando com um sistema que elétrico (complexo) de uma e-bike em que lidamos com a integração, com a compatibilidade, com a conectividade, e com os cuidados especiais de instalação de muitas peças, sem uma boa documentação dando suporte

Principalmente os controladores, com seus muitos fios, onde, apesar de boa parte deles serem para conectar partes que constituem, praticamente, um sistema padrão, vários outros estão associados a funções mais especificas, que podem, inclusive, diferir no modo de ligação de fabricante para fabricante e, em alguns caso, até mesmo, estarem associados a funções proprietárias de um certo fabricante, o que pode acabar amarrando o emprego deles para ser realizado, apenas, em conjunto com determinadas outras peças, que formam Kit para ser vendido completo.

Para que ninguém pense que eu digo isso tudo apenas por meras questões geopolíticas, eu vou apresentar, para comparar com o controlador fabricado pela gigante chinesa Focan Eletronic Factory (visto acima), um controlador que não é produzido nem na Europa ocidental, nem nos EUA, mas, sim, em Moscou na Rússia, o MINI-E da Adaptto E-Drive Lab Ltd, e me digam se tanto a melhor estruturação do cabeamento, quanto a qualidade melhorada dos conectores não dá a esse controlador um aspecto de um verdadeiro produto de qualidade internacional:


Apesar dele não ser um produto perfeito, pois, apesar do alto grau IP-65 de proteção dos conectores o grau de proteção da caixa do MINI-E da Adaptto é apenas IP-54: há proteção contra poeira, mas ele não é a prova de poeira, enquanto ele é protegido contra jorro de água, e não jato de água. De fato, há um manual bem documentado, porém nenhum elogio, ou mesmo referência e feita a caixa, a não ser o comentário (extra documentação) que dá conta de um volume extraordinariamente pequeno.

O volume pequeno da caixa é atribuído ao atingimento de uma elevada densidade de potência, ou seja, a ponte de semicondutores de potência que realiza a conversão da energia da bateria para as fases do motor é feita com algum tipo especial de componente (ainda que, provavelmente, deva ser MOSFET), que prove ao sistema uma elevada taxa de rendimento ao processo de  conversão.

Isso significa que muito pouco da energia que é tomada da bateria fica retida (perdida) nos componentes de eletrônica de potência do controlador, sendo toda ela, praticamente, entregue ao motor. Quanto maior a parcela de energia que fica retida no controlador (o que significa baixo rendimento) maior é o aquecimento dos semicondutores de potência da ponte conversora.

Com aquecimento maior dos MOSFETs, é preciso grande volume de alumínio para realizar a troca e a dissipação de calor para evitar a queima dos componentes. Esse é o caso do controlador de 200 W da Focan, que possui um comprido, espesso e pesado perfil em forma de T internamente a caixa do controlador, onde os MOSFETs são mecanicamente afixados.

Já, para que haja baixa perda (ou alto rendimento), isso é devido, principalmente, a atributos funcionais especiais das chaves semicondutora de potência. Eu não sei o que os russos usaram ali, mas, eles conseguiram dispensar boa parte da necessidade de dissipador de alumínio. Contudo, dá para ver que a caixa do controlador tem duas janelas recortadas do lado que saem os cabos de conexão e, eu não creio que tais janelas possam ser tapadas, sem comprometer o arrefecimento dos semicondutores de potência. Dai a questão é saber: não entra água por ali?

De qualquer modo, MINI-E da Adaptto tem uma série de outros atributos bem legais para a aplicação em e-bikes que são dignos de comentário:
  • O Controle de Comutação é Senoidal: permitir o uso de energia mais suave e preciso, menor trepidação e ruido audível, alem de ajudar bastante na obtenção da elevada taxa de rendimento (ou eficiência) no processo de conversão;
  • Permite ligar um ou dos motores ao mesmo controlador: Além do fato de que você pode facilmente construir um e-bike com tração nas duas rodas, você pode ainda ajustar a potência dos motores separadamente e escolher a velocidade de desligamento do motor frontal. Uma e-bike com tração também na roda dianteira pode ser algo muito interessante para o caso aplicação de uma e-bike de montanha que precisa vencer, a baixa velocidade, porém em torque elevado, eventuais obstáculos complicados;
  • Conector de entrada para dar suporte ao emprego de Sensor PAS (Pedal Assist Sensor): isso pode ser algo essencial para tornar o controlador possível de ser empregado em e-bikes do tipo Pedelec (mesmo que, para isso, seja necessário adicionar algum subsistema eletrônico extra que adapte à informação do sensor de cadência, também a informação de um sensor torque, obtendo um resultado de ambos combinados, algo sem o qual uma verdadeira Pedelec não pode operar em uma assistência automática perfeita);
  • Controle de regeneração ajustável e progressivo: Basicamente o sensor de freio de uma e-bike qualquer significa que quando você aciona  uma das alavancas de freio, o controlador, simplesmente, corta a potência que vinha sendo entregue ao motor. O controlador de energia de frenagem regenerativa progressiva usa o sensor de freio da alavanca de freio traseira ou dianteira, ou você terá apenas uma alavanca para controlar ambos os freios dianteiros e traseiros, mas o principal é que você energia devolvida a bateria, toda vez que você executa a frenagem.
  • Proteção Contra Superaquecimento do Motor e do Controlador: a temperatura de ambos é constantemente monitorada e a potência é gerida em conformidade. É claro que precisa equipar o motor com um sensor de temperatura internamente, o qual envia o seu sinal a uma entrada do controlador. O limite de temperatura é ajustável. Também a temperatura dos semicondutores de potênciaé monitorada protegendo-os contra eventual queima.
  • Carregar a bateria através do controlador, utilizando bobina de carregamento, e Configuração da bateria / BMS (Battery Management System).
Todos estes são atributos desejáveis que muitíssimo dificilmente serão encontrado em outros controladores para e-bikes genéricos. De fato, quase que a totalidade dos controladores genéricos chineses são voltados para emprego e-bikes Power on Demand, e não para as e-bikes Pedelecs. Você não encontrará, facilmente, controladores com entrada para o Sensor PAS (sensor de cadência) vendidos separadamente, vindos da produção na China. Dentro do próprio mercado Chinês, a tecnologia das e-bikes pedelecs não é prestigiada. O gosto por pedalar, o pedalar pelo esporte, não faz parte da cultura chinesa.

Na China (e na Ásia, em geral) os pilotos de e-bikes tendem a conduzi-las como se eles estivessem conduzindo motocicletas em vez de bicicletas. Já, na Europa, principalmente, os pilotos são mais propensos a operar e-bikes pelo modo de condução assistida. As regras lá exigem que os ciclistas estejam pedalando, antes, para ligar o motor, depois. Por sua vez, para o chinês a bicicleta é um transporte utilitário num sentido mais estrito e, o pedalar, uma obrigação desconfortável, a qual o sistema elétrico tende a pôr fim.

A China experimentou um crescimento explosivo das vendas de e-bikes Power on Demand (não Pedelec), incluindo todo tipo de scooters e motonetas, sempre com a manopla de acelerador, onde pedalar é só para casos de emergência, com vendas anuais saltando de 56.000 unidades/ano em 1998 para mais de 21 milhões de unidades/ano em 2008, e atingindo uma frota estimada de 120 milhões de e-bikes (nãos assistidas) no início de 2010.

Então chama muito a atenção quando encontramos um controlador como o MINI-E da Adaptto, que tem entrada para o Sensor PAS e função em seu software para dar suporte a ele. Contudo, falta, ainda, dar suporte para, ao menos um sensor de torque, que é essencial para a e-bike pedelec controlar adequadamente a entrega da potência do motor. 

Entretanto, nem dá para culpar a Adaptto por esse motivo, pois, o emprego mais acentuado dos sensores de torque em e-bikes pedelecs é algo ainda recente e, entre os sensores existentes não há, ainda, nenhum padrão, nem quanto aos princípios físicos da detecção, tal qual quanto ao formato dos sinais gerados. A emprego do sensor de torque ainda é tão incipiente que você pode ouvir em fóruns sobre e-bikes pedelecs perguntas do tipo: Qual sensor você prefere, o sensor de cadência ou o sensor de torque?

A resposta para essa pergunta deve ser "ambos", usados em combinação. O controlador precisa tanto do torque, quanto da velocidade angular, para ele poder determinar a potência, e é a potência que precisamos regular. Na postagem anterior eu apresentei a vocês um sensor diferente que permite extrair dele a informação de torque e de velocidade, concomitantemente. Esse é, de fato, um sensor que tende a perfeição para ser empregado em e-bike pedelec. Ele permite ao controlador determinar a potência, pois ele envia ambas informações ao controlador: o torque e a velocidade.

Contudo, enfim, parece que os fabricantes de controladores ainda não estão muito dispostos a formatar os seus produtos para dar suporte ao sensor de torque, que é caro e, por isso, considerado algo para ser empregado apenas em e-bikes mais sofisticadas, poucas, ainda e prontas de de fábrica, quando, na verdade, o que ele propicia, em conjunto com o sensor de cadência, é viabilizar a VERDADEIRA E-BIKE PEDELEC.

Sensores de torque são de difícil emprego, também, nas adaptações de e-bikes, simplesmente pela absoluta falta de oferta de controladores (sendo raro mesmo entre aqueles que compõem kits completos) que deem suporte a tal sensor. Assim, a grande maioria da Pedelecs seguem utilizando apenas o sensor de cadência, num sistema de controle que apresenta problemas de performance, obrigando os ciclistas a apelar para "aceleradores disfarçados".

Existe E-bike Pedelec Falsa?


Sim, existe. Deveras ela existe já há bastante tempo e em grande quantidade. De fato, todas as e-bike assistidas que são dotadas de um dispositivo por meio do qual você pode ajustar, enquanto você está dirigindo múltiplos níveis de potência de assistência, como uma botoeira de controle onde você pode definir manualmente, por exemplo, quatro níveis de potência de assistência (Baixa, Média, Máxima e Desligado) é (podem ser) característico de uma "Falsa Pedelec".

O motivo dessa minha afirmação é muito simples: do modo como ele vem sendo usado, o tal dispositivo nada mais é do que um acelerador disfarçado. Ele fica estrategicamente disposto bem próximo das mão direita do piloto (a mão que manipula a aceleração em motos e motonetas (scooters)) justamente para que ele possa ser usado, facilmente, agilmente, o tempo todo, tal como um acelerador. Só que acelerando em degraus ou escalões, em vez de continuamente.

Oferecer Níveis de Potência de Assistência ajustáveis 1, de zero a máxima com vários níveis de assistência é algo muito mais útil do que um PAS que se baseia, apenas, na velocidade de pedalada. Positivamente esse é um recurso bom e que deve ser mantido, entretanto, devido ao mal desempenho das e-bikes pedelecs que controlam o motor sem contar com a informação do torque, o modo como o ciclista usa este recurso faz com ele seja, nada mais, nada menos, do que a mesma coisa que um acelerador.

Com o emprego do sensor de torque, combinado com o sensor de cadência, ou de um único sensor que forneça essas duas informações de modo concomitante (torque e cadência da pedalada via um só sensor), isso, combinado, ainda, com um sensor extra que informa a velocidade (da roda) da e-bike, a performance do controle sobre o motor melhora tanto, que o ciclista deixa de usar o seletor de níveis de assistência, como se fosse um mero acelerador.

Isso é um sistema adequado para uma VERDADEIRA E-BIKE PEDELEC. Equipar a e-bike pedelec com os três sensores informando, simultaneamente, as suas condições da operação para a unidade de controle, permite que o piloto seja apoiado pelo motor com uma assistência contínua e adequado em todas as condições de condução. O auxiliar contínuo e adequado é o que garante o conceito de "potência variando suavemente e sempre na direção certa" durante a operação


Na postagem anterior vimos que sensores que medem o torque (também conhecidos pelo acrônimo PTS do inglês Pedal Torque Sensor), ou mesmo sensores que medem a potência (indiretamente, por meio de sensor duplo integrado numa só peça final), costumam ser concebidos para ser alojados no interior do vão do suporte inferior (onde corre eixo da pedaleira). Vimos, também, que sensores PAS (de cadência, apenas), do tipo bipartidos resolveram o problema de ter que se desmontar a pedaleira para serem instalados. No entanto, a instalação dos sensores de torque mencionados exigem o desmonte completo e, até mesmo, alguma eventual adaptação que precisa ser feita ao braço da pedaleira.

Assim, para fugir disso, podemos encontrar (e contar), também, com outras ofertas diferenciadas, tais como o sensor de torque que já vem agregado ao conjunto de coroas e ao braço do pedal (via JCebike - Suzhou Victory Sincerity Co., Ltd.), ou outras versões com base em princípios de medição bem diferentes, como a que mede o torque extraindo a informação pela tensão aplicada à corrente da transmissão (BEANts via Santa Monica Electric Vehicles). Ambos os tipos de produtos podem ser observados na figura abaixo:


Minshine XMK-006  - Sensor de Torque Integrado ao Motor 
Digno de nota é, também, o caso em que se extrai indiretamente potência com a informação de um sensor de torque que é montado embutido, internamente ao próprio motor, ou seja, um motor com sensor de torque integrado, combinado com sensor de cadência montado externamente, no mesmo eixo, ou, apartado, em um outro eixo, tal como o que é mostrado na figura ao lado (XMK Torque Sensor - e-Bike System via SuZhou Minshine Electronic.Co. Ltd.,

Muito embora o fabricante apresente apenas a solução para o emprego em Unidades de Acionamento Direct Drive, é evidente que ele poderia, também, fazer modificações do projeto para atender a necessidade do empregado para os casos de Unidades de Acionamento Mid-Drive

Unidades de Acionamento Direct Drive e Unidades de acionamento Mid-Drive são diferentes sistemas, de diferentes Classes quanto a Posição de Instalação do Motor Elétrico nas E-bikes, que implica, inclusive, em diferentes Tipos quanto a Construção dos mesmo, cuja a comparação passaremos a ver mais adiante.

Dizemos que o sensor de torque está integrado ao motor (torque sensor built-in motor), não significa, necessariamente, que o motor e o sensor não possam ser considerados, separadamente, para efeito de uma eventual manutenção com reposição de uma das partes.

Quando você estuda sobre os vários princípios de medição do torque, você verifica que sempre houve uma tendência que remetia o ponto de medição sempre para eixo, sejam, por exemplo, no caso do emprego do princípio magnetoelástico como sensor, ou seja do emprego de extensômetros (Strain Gauges) como transdutores (configuração de Sensor). Métodos de tecnologia magnetoelástica convenientemente dimensionados podem funcionar em qualquer tamanho de substrato, e rodando em uma grande gama de velocidades.

Hoje em dia, métodos para a medição do torque baseado no efeito magnetostritivo inverso (isto é, efeito magnetoelástico ou efeito Villari) fornece uma medição de torque comercialmente viável, quer numa direção axial ou radial. Medição por efeito magnetoelástico no sentido axial parece ser o caso (porém, eu não estou certo disso, ainda) empregado no sensor de torque integrado ao motor Minshine XMK-006 (mostrado acima).

Motor BionX - Rotor e Sensor de Torque
Já, um caso exemplar de emprego de extensômetros (Strain Gauges) como transdutor de torque encontramos no sistema da BionX International Corporation, onde, o que se encontra integrado ao motor (e ao cassette de pinhões) é um sensor de torque do tipo cartucho que é montado embutido no interior do cubo (rotor do motor).

Tal como o motor da Minshine, este motor da BionX é, também, concebido para emprego em sistema de tração Direct-Drive, de modo que o sensor de torque estará realizando a medição sentindo o torque no eixo da roda da e-bike em o motor ele é montado (a roda tracionada que, em geral, é a roda traseira), em vez de medir o torque no eixo da pedaleira.

Talvez, uma boa opção para projetistas brasileiros de e-bikes seja começar consultando a Schaeffler do Brasil, que em 2018 irá comemorar 60 anos de Brasil. Uma história que teve início com a instalação da Rolamentos Schaeffler do Brasil, num momento em que a indústria automobilística começava a acelerar a nação. Sediada em Sorocaba, SP, a Schaeffler do Brasil reúne as três principais marcas: INA, FAG e LuK. Além da planta fabril localizada no Brasil, a empresa possui operações em diversos países da América do Sul.

A Schaeffler mundial fabrica três versões de sensores do tipo cartucho BB (para instalar no vão do suporte inferior, onde corre o eixo da pedaleira) para e-bikes. A versão mais simples (BBRS) fornece apenas a medição da velocidade e do sentido de rotação, enquanto as outras duas versões (BBRTS e BBRTTS), utilizando sensores de princípio magnetoelástico permitem ler, concomitantemente, velocidade, sentido de rotação e o torque, em apenas um dos lados (no pedal do lado esquerdo) ou em ambos os lados (ambos os pedais), respectivamente.

Sensor BBRTTS: - Velocidade / Sentido / Torque "Luxury class ride comfort"

Em todos os casos vistos, ambas as medidas, a velocidade (cadência) da pedaleira e a do torque (do eixo do pedal ou da roda) devem ir para o controlador a fim de serem interpretados e combinados de modo ao controlador acionar o motor aplicando a sua potência de assistência, conforme o necessário.

Sistema Mid-Drive versus Sistema Direct-Drive


O termo "Sistema Mid-Drive" refere-se em que o motor que irá atuar na tração elétrica é instalado de modo tracionar a pedaleira da e-bike, seja esta tração aplicada diretamente, com os pedais acoplados ao eixo do motor, ou, de modo diferente, que haja uma corrente (ou mesmo um par engrenagens ligadas diretamente) de transmissão interligando os eixos do motor e pedaleira.. O que importa, de fato, para ser classificado "Sistema Mid-Drive" é que o motor transfira potência primeiro para o eixo da pedaleira (e não diretamente para alguma das rodas).

Já, o termo "Sistema Direct-Drive" refere-se ao emprego do motor para tracionar diretamente a roda da e-bike, seja para prover tração a apenas uma delas (em geral, mas não obrigatoriamente, a roda traseira) ou ambas as rodas (com dois motores, um em cada roda) para o caso de tração dupla (2WD). No "Sistema Direct-Drive", um motor é alojado diretamente ao centro da roda, ocupando o lugar do cubo da roda (em inglês, Wheel Hub Motor, ou Motor do Cubo da Roda, ou, simplesmente, o temo de emprego mais popular "Hub Motor", ou, Motor do Cubo).

Em ambos os casos, o motor empregado poderá, ou não, integrar uma caixa de redução contendo engrenagens. Em caso positivo, os termos denominativos populares (lá fora) são, respectivamente, Brushless Geared Mid-Drive MotorGeared Hub Motor.

Bem, antes de tudo a questão é decidir por algumas das duas opções: Sistema Mid-Drive ou Sistema Direct-Drive (ou Motor do Cubo da Roda ou um Motor de Acionamento da Pedivela). Essa decisão não é fácil, pois, cada motor, e o seu sistema relacionado, tem vantagens e desvantagens.

Seja qual for a sua escolha, você precisa ter em mente, sempre, manter o sistema simples, leve e "magro", seja para escolher qual e-bike comprar pronta de fábrica, ou para planejar o trabalho que você terá, e os custos de aquisição das partes, para executar a conversão de uma bicicleta convencional, além de antecipar essas mesmas coisas, também para eventuais posteriores serviços de manutenção.

Talvez convenha manter o foco sobre o que é "Legal", se é que você pretende desfrutar das benesses da Lei (resolução 465/2013 do CONTRAN publicada em 13 de dezembro de 2013), que diz, resumidamente: bicicletas elétricas se equiparam às bicicletas comuns, desde que não possuam acelerador. Assim, e-bikes do tipo Potência sob Demanda parece que ficam fora de questão.

Se é para ser uma e-bike "magrela e moderna", descarte ideias construídas em cima de tecnologias ultrapassadas, como a de empregar motores com escovas (que resultaria em maior manutenção), ou sofisticações desnecessárias e / ou inadequadas para uma e-bake que precisa ser do tipo "potência assistida" (pedelec), como, por exemplo, sistemas que envolvam tração por fricção.

Para ambos, Sistema Mid-Drive ou Sistema Direct-Drive, os Motores de Ímãs Permanentes Sem Escovas são os recomendáveis. BLDC, PMAC, BPM, PMDC, pouco importa estas siglas, pois, enfim, são todos motores síncronos para serem comutados eletronicamente, com energia fornecida por uma fonte de CC (a bateria), mas por meio de um conversor que comuta a fonte de alimentação, produzindo um sinal elétrico de CA (com corrente entrando e corrente saindo pelos enrolamentos, alternadamente) para acionar o motor.

Sistema Direct-Drive, Motor do Cubo da Roda (Hub Motor com e sem Redutor):


Para a readaptação (retrofitting de bike em e-bike), adotar Sistema Direct-Drive, se bem planejado, em geral, pode resultar em menor trabalho na parte mecânica (por não necessitar, por exemplo, de um suporte customizado que o prenda o motor ao quadro), mas na hora da manutenção, não há diferença considerável.

Motor do Cubo da Roda (Hub Motor) é uma máquina de design moderno, para ser montada num arranjo com o motor incorporado no próprio cubo da roda, em geral, de um modo que o Estator é fixo solidamente ao eixo, enquanto o Rotor, com seus imãs permanentes, é a parte radialmente mais externa e rotativa, que é ligada com a estrutura da roda. Assim, ele é um motor de rotor externo, o que significa dizer que ele é um motor fluxo radial outrunner,.

Por uma série de razões, associadas com o que foi dito acima (além de outras, porém, não associadas ao fato extra de que ele costuma ser fornecido, muitas vezes, com a roda toda previamente integrada a ele) há uma forte tendência para que ele custe mais caro do que um motor concorrente para o "Sistema Mid-Drive".

Como o motor está convenientemente situado no cubo da roda, isso resulta em não acarretar em quase nenhuma mudança no aspecto básico original da bike, facilitando, inclusive, se for este um caso de necessidade, de passar o motor de uma bicicleta para outra. Porém, com algum peso extra na roda, o centro de gravidade se desloca um pouco para lado dela e, quanto mais pesada ficar a roda em relação ao que era antes, mais sera este deslocamento.

Motores do Cubo da Roda podem conter, embutido à sua carcaça, um Sistema de Redução por Engrenagens Planetárias. Neste caso, ele continua sendo um motor de fluxo radial, porém, a topologia é outra, invertendo a posição relativa entre o Estator e o Rotor.

Com o rotor indo ao centro, a parir do seu eixo a rotação é transmitida para o tambor externo, via as três engrenagens do sistema planetário. As engrenagens planetárias são de números de dentes idênticos entre si. A estrutura da roda é fixa ao tambor externo.

O tambor externo tem, na periferia de sua face interna, um número de dentes que é m vez maior do que o número de dentes de cada uma das engrenagens planetárias. Estas, por sua vez, têm número de dentes n vezes maior do que os dentes que existem no eixo do rotor.

Deste modo, a velocidade de rotação da roda é m·n menor do que a velocidade de rotação do eixo do motor, enquanto a força de tração aplicada à roda é m·n maior do aquela que o torque do motor aplica à engrenagem que está em seu eixo.

Por conta do sistema de redução por engrenagens planetárias, este motor é chamado de Motor do Cubo de Engrenagens (ou, Motor do Cubo Redutor, ou ainda, em inglês, Geared Hub Motor). Isto permite ao motor funcionar a velocidades mais elevadas e mais eficientes, enquanto a roda da e-bike rotaciona na velocidade de condução, comparativamente mais lenta, mas com força aumentada.

Por conta do sistema de redução por engrenagens planetárias, ainda, muitos consideram que o Motor do Cubo de Engrenagens não deve ser denominado por "Sistema Direct-Drive", uma vez que, agora, há um sistema de transmissão, ainda que internamente.

Por realizar a redução da velocidade, o sistema de transmissão interno tem a habilidade de isolar a roda do motor, de forma quase nenhuma resistência devida ao torque de retenção (cogging torque) é percebida ao girar a roda, que pode ser sentida como algo desagradável e redutor do desempenho do ciclista, quando ele está pedalando uma e-bike com o motor do cubo (sem redutor) estando desenergizado, ou mesmo com nível de assistência baixo.

Com o emprego do sistema de redução por engrenagens planetárias, apesar de haver tanto transformação da força e quanto da velocidade, uma vez que tais transformação se dão sempre em sentidos inversos, o produto de ambas, que é a potência, será sempre a mesma (salvo eventuais perdas que, neste caso, são desprezíveis).

A subida de um certo aclive, sendo realizada pela e-bike sendo condizida a uma dada velocidade típica, impõem ao Motor do Cubo "direct drive" (sem redutor) uma velocidade rotacional relativamente baixa, o que resulta dele operar num ponto pouco adequado, em que há certa perda de rendimento,

O emprego do sistema de redução por engrenagens planetárias faz com que o motor possa estar operando a uma velocidade maior, para a mesma velocidade de condução da e-bike, realizando o trabalho de subir pelo mesmo aclive. Isso simplesmente desloca o ponto de operação do motor para uma situação que resulta em melhora de seu rendimento. Simples assim.

A maioria dos motores do cubo de engrenagens (geared hub motors) disponíveis para serem instalados em e-bikes são dimensionados para um potência nominal de até 350 watts 2, apenas. Contudo, isso não é problema algum, se nós considerarmos que estamos falando de uma e-bike para ser legalmente equipada a bicicleta regular, pois, a resolução 465/2013 do CONTRAN publicada em 13 de dezembro de 2013 especifica exatamente esse mesmo limite, para a seguinte permissão:

§ 3º Fica excepcionalizada da equiparação prevista no caput deste artigo a bicicleta dotada originalmente de motor elétrico auxiliar, bem como aquela que tiver o dispositivo motriz agregado posteriormente à sua estrutura, sendo permitida a sua circulação em ciclovias e ciclo faixas, atendidas as seguintes condições:

  1.  – com potência nominal máxima de até 350 Watts;
  2.  - ...

Motor do Cubo da Roda (Hub Motor) - Aproveitamento da Habilidade Regenerativa:


Para falar poucas palavras sobre tal vantagem (pois isso será tema que voltará a ser abordado na próxima postagem), a habilidade que o Motor do Cubo da Roda (Hub Motor) apresenta para prover Regeneração / Frenagens Regenerativa não é devido a algo inerente ao motor, em si: 

Todo motor tem habilidade regenerativa, ou seja, construtivamente, todos os Motores são, de fato, Máquinas Elétricas (e essa é a denominação até mais adequada para se usar no contexto de frenagem regenerativa) que foram concebidas para operar em ambos os modos: Modo Motor e Modo Gerador:
  • Se a Máquina Elétrica (motor) recebe energia elétrica, ela converte para energia mecânica (e está operando, de fato, no modo motor), porém;
  • Se a Maquina Elétrica recebe energia mecânica (se você girar o eixo dela, externamente, de alguma forma), ela converte para energia elétrica (e, portanto, está operando no modo gerador).
Então, não é que, em especial, o Hub Motor tenha capacidade regenerativa, mas sim, o modo como ele é montado na e-bike é que determina que ele pode fazer bom uso da capacidade regenerativa que ele tem. 

Por estar montado na roda da e-bike (e não na pedaleira, como o Mid-Drive), o Hub Motor pode tanto estar convertendo energia elétrica em energia mecânica na forma de potência com força de tração para a roda, como, ao contrário, o ciclista pode estar descendo um declive, já em velocidade adequada, sem a necessidade de pedalar (de modo que a pedaleira não vira e um motor Mid-Drive ligado ali, também não viraria), mas, a roda da e-bike está a girar e, portanto, o motor do cubo da roda, consequentemente, também está a girar (recebendo da roda energia mecânica).

Neste caso, o a máquina elétrica (que é o motor) não está recebendo potência entregue pelo sistema elétrico, mas, a máquina elétrica está, sim, recebendo energia mecânica pelo movimento da e-bike. Essa energia mecânica faz com que o rotor da máquina elétrica seja forçado a girar, e portanto, estará gerando eletricidade, que é induzida pelo movimento dos imãs do rotor em seu estator. A eletricidade gerada pode ser aproveitada, ou não.

Assim, instalar o motor na roda é o que propicia a possibilidade de se aproveitar a habilidade de regeneração que toda máquina elétrica tem. A habilidade de regeneração do Hub Motor pode ser aproveitada porque ele opera direto na roda (Direct-Drive) independente se há, ou não, o redutor integrado a ele (dai o fato de alguns autores de literatura técnica, como é o meu caso, não concordarem em remover a designação "Direct-Drive" quando há o redutor planetário embutido no motor).

Os arranjos de instalação Mid-Drive,. infelizmente, não permitem aproveitar a regeneração que ocorre em uma "banguela", simplesmente porque a pedaleira irá permanecer imóvel. Contudo, infelizmente, também, o recurso de aproveitar a regeneração para, efetivamente, mandar carga elétrica de volta para a bateria é muito pouco empregado em Kits de conversão de e-kikes e menos ainda em e-kikes comerciais.

Eu tenho encontrado apenas um caso de relativo sucesso comercial do emprego de regeneração (que requer alguma implementação extra para o controlador) nos kits de conversão de e-bikes da BionX.

Na próxima postagem nós trataremos, mais especificamente, da Frenagem Regenerativa, além de, evidentemente, de abordarmos, em maiores detalhes o Sistema Mid-Drive de montagem do motor. 

Notas:


  1. Em e-bikes do tipo Potência sob Demanda, os botões que são denominados de Seleção de Nível de Potência Assistência nas Pedelecs são, mais adequadamente denominados, simplesmente por 3 Velocidades (em inglês Three-Speed Switch), pois o termo  "potência de assistência" simplesmente não condiz (ou não convém) com o caso do tipo Potencia sob Demanda. Como numa e-bike potência sob demanda o ciclista dispõem da manopla do acelerador para controlar a velocidade, de fato, os botões acabam sendo pouco usados, e usado de uma forma mais inteligente, ou seja, como se fossem, realmente, seletores de nível de assistência, enquanto que nas pedelecs mal resolvidas (mal projetadas), devido a falta do sensor de torque, tais botões acabam sendo usados muito mais frequentemente, e como se fosse o acelerador, o qual o ciclista acaba sentindo falta. Por isso pedelecs sem o sensor de torque são umas %$#%@.
  2. A maioria dos motores do cubo de engrenagens (geared hub motors) disponíveis para serem instalados em e-bikes são dimensionados para um potência nominal de até 350 watts, mas não todos. Há alguma oferta de 500 W e de 1000 W, também (ou, até mais, se você puder pagar), visando atender ao mercado dos que são "inconformados com apenas o necessário".

Veja Também: 


Unidade de Acionamento de E-Bikes Pedelec e Potência sob Demanda - Parte 3/3




Licença Creative Commons
Este trabalho de André Luis Lenz, foi licenciado com uma Licença Creative Commons - Atribuição - NãoComercial - CompartilhaIgual 3.0 Não Adaptada.