Mostrando postagens com marcador motor cc sem escovas. Mostrar todas as postagens
Mostrando postagens com marcador motor cc sem escovas. Mostrar todas as postagens

quinta-feira, 5 de maio de 2016

Unidade de Acionamento de E-Bikes Pedelec e Potência sob Demanda - Parte 1/3

Este artigo corresponde ao início de uma nova série postagens de artigos, a qual, contudo, corresponde a uma parte final, que complementa em um nível avançado, uma série de outros três outros artigos que foram produzidos e publicados anteriormente neste mesmo blog. Muitos dos termos e dos conceitos empregados aqui talvez requeiram conhecimentos relacionados aos artigos anteriores.





Sobre os Motores e Seus Controladores em E-Bikes:


Independente de como eles são instalador, ou seja, se eles tracionam diretamente as rodas, ou se eles tracionam a coroa / pedaleira, as e-bikes, em geral, e as do tipo Pedelec, em especial, empregam motores que são Máquina de Imãs Permanentes. 

Existe alguma controvérsia sobre qual a denominação adequado para um motor que é uma Máquina de Imãs Permanentes: eles são chamados tanto Motor CA Síncrono, quanto de Motor CC Sem Escovas.

Fazer escolha correta entre esses dois nomes pode parecer não muito não é tão importante, dado ao fato de que a fonte de energia elétrica em uma e-bike é um pacote de baterias que fornece uma tensão de saída CC, então parece lógico afirmar que ela deva empregar um Motor CC Sem Escovas.

Contudo, fato é que essas "duas" maquinas elétricas (essas duas denominações de motor), em si, são, de fato, a mesma máquina, podendo ser constituída e construída de formas exatamente iguais.

Além do mais, a Máquina de Imãs Permanentes, que é a denominação mais adequada para designar ambos esses "dois tipos" de motores, é concebida, já de uma cera longa data, especialmente para atender as aplicações em que haja a necessidade de se operar com velocidade variada.

Para se variar a velocidade de Máquinas de Imãs Permanentes empregamos circuitos de comutação de eletrônica de potência e, em qualquer caso, isso resulta em velocidade síncrona e variável em um Motor Eletronicamente Comutado.

A arquitetura do circuitos de comutação de eletrônica de potência também pode ser a mesma para qualquer caso, porém, o que muda, de fato, é se o projeto do sistema de tração do veículo elétrico fez uma escolha pela técnica de comutação sinusoidal, ou se, diferentemente, fez uma escolha pela técnica de comutação trapezoidal.

Olhar para a máquina elétrica (motor) ou mesmo olhar para a arquitetura de hardware (os circuitos eletrônicos) do controlador, não revela nada que permita saber, ao certo, se é comutação sinusoidal ou se é comutação trapezoidal.

Para saber sobre o tipo de comutação, tem que se olhar para o algorítimo de controle do controlador e para a técnica de PWM empregada, combinado com o tipo de sensoriamento que é requerido (ou escolhido) para o controle do circuito de comutação eletrônica.

Até aonde eu estou conseguindo pesquisar, tanto nas nas e-bike prontas de fábrica, quanto nos Kits para conversões de bicicletas em e-bikes, controladores de motores com técnicas de comutação que resultam em ambos, tanto uma FCEM (Força Contra-eletromotriz) 1 de forma sinusoidal, quanto uma FCEM de forma retangular são ampla e igualmente empregados.

Acontece que, por razões comerciais, e por razões de tradição e orgulho (hehehe), mesmo o pessoal da engenharia eletroeletrônica dos sistemas para mobilidade continuam persistindo em  falar em termos de Motor CA Síncrono ou Motor CC Sem Escovas. 

Não obstante, eu volto a dizer, os motores das e-bikes são, predominantemente, Máquina de Imãs Permanentes (e ponto), salvo raros projetos que têm sido implementos com Motor de Indução, este, sim, uma máquina estruturalmente diferenciada, concebida para operar estritamente em CA e de custo de fabricação bais baixo (pois não requer os, ainda caros, imãs permanentes no rotor). 

Contudo, porque motores de imãs permanentes de potência nominal na faixa de 250 W ~ 500 W são pequenos o bastante para o custo extra dos imãs nem ser algo tão considerável e, porque o motores de imãs permanentes apresentam maior densidade de energia, maior torque em velocidades baixas e maior pico de torque na partida, além de, comparativamente, maior eficiência quando em tamanho pequeno, o emprego de Motor de Indução é, deveras, muito raro em e-bikes.

Sensores para as Malhas de Controle do Motor (E-Bike Pedelec):


Em se tratando de e-bikes, estamos falando de um Veículo Elétrico Leve (levíssimo) que (no meu modo de ver) deve ser pensado para ter um sistema de controle do motor (o máximo possível) simples e barato, Creio que isso deva ser algo para ser assumido como uma meta (ou uma baliza), mesmo em se tratando de projeto de e-bikes do tipo Potência Sob Demanda (as e-bikes cujo acionamento do motor é provido por um acelerador manipulado pelo ciclista). Contudo, é claro que isso deve ser atingido sem deixar de atender aos requisitos técnicos da aplicação.

Motores de imãs permanentes podem ter um controlador que, a princípio, o ponha em movimento com velocidade síncrona e variável, de modo que ele opere como um motor eletronicamente comutado, com o emprego de NENHUM SENSOR (Sensorless Control), independente da escolha que se faça pela técnica de comutação a ser implementada: sinusoidal ou trapezoidal.

Neste caso, eu estou me referindo, mais especificamente, ao trio de sensores de efeito hall que são empregados para o controle pela comutação de seis vetores sequenciais para modulação de 120°, que é feita com base nos estados dos três sensores de efeito Hall, que são lidos pelo controle. Essa é uma sofisticação para ser usada em máquinas e equipamentos de alta qualidade concebidos para aplicações de alto desempenho que exigem alta confiabilidade e eficiência, de modo que, na minha opinião, nós devemos questionar, seriamente, se a aplicação de e-bikes, de fato, a requer. 

Entretanto, eu posso ver, de antemão, que é considerável o número de projetos de e-bikes Power on Demand (tanto de fábrica quanto customizados) que persistem em contemplar essa arquitetura, porém, também vejo que eles podem estar sendo elaborados sem um critério consistente quanto a custo-benefício, e sem uma preocupação maior quanto a limitação de custos, o que resulta em hardware extra, volumoso e pesado (e mais itens para constar de uma eventual manutenção).

Por outro lado, nas e-bikes do tipo Pedelec, porque elas, por definição, não devem dispor de acelerador algum ser acionado pelo ciclista, isso determina um contexto em que elas devem operar Potência Sob Demanda Automática e, consequentemente torna necessário o emprego de certos sensores específicos para e-bikes Pedelec que vão além dos sensores dos sensores típicos de aplicações de e-bikes dotadas de um acelerador acionado pelo ciclista.

Em geral, ao menos um sensor extra deve ser empregado. Esse sensor, comercialmente denominado Sensor PAS 2 (do inglês Pedal Assist Sensor), comumente também é um sensor de efeito hall, que detecta se há rotação da pedaleira e qual é a velocidade dela, de modo a informar ao controlador de que ele deve liberar energia para por o motor em marcha, assim que o ciclista começar a pedalar.

Para realizar isso, e-bikes do tipo Pedelec atuais têm, tipicamente 3, um disco fixado ao eixo da pedaleira, o qual tem peças de imãs permanentes incrustadas perto da borda da periferia. Quando o disco gira, como os ímãs estão acoplados ao sensor de efeito hall, isso dá origem a uma série de pulsos da saída do sensor. A frequência desses pulsos é proporcional à velocidade de pedalada (dai, este sensor também ser conhecido pelo título da sua função: Sensor de Cadência4).

O custo deste sistema sensor é determinado, predominantemente, pelo número de peças de imãs permanentes empregados, que costuma variar entre 4 a 12 peças. Quanto maior for o número de imãs, maior a quantidade total de pulsos que ocorre em cada revolução da pedaleira. Quanto mais pulsos ocorrerem, isso permite realizar um controle de resolução mais apertada, e com um mais rápido tempo de resposta do acionamento. Contudo, toda vez que você cogita empregar imãs permanentes (ímãs de neodímio, ímãs de terras raras), seja para implementar sistemas sensores, ou seja para constituir máquinas elétricas, você está lidando com uma questão geopolítica delicada, porque a produção desses imãs é praticamente um monopólio da China, com cerca de 90% do mercado.

O sensor PAS pode ser montado de ambos os lados da e-bike: do lado esquerdo (lado da coroa), ou do lado direito, contudo, ambas as montagens exigem o desmonte da pedaleira. Pensando nisso, alguns fabricantes fornecem o sensor PAS na forma de um disco bipartido (duas metades separadas para serem unida na montagem). Isso evita o desmonte da pedaleira para instalá-lo. Basta juntar as duas metades sobre o suporte inferior (da pedaleira) e prender as duas partes em seu lugar com um anel elástico.

Além do mais, o Sensor de Cadência é o sensor mínimo obrigatório que uma e-bike pedelec possui. Este sensor, sozinho, resulta num controle que costuma a apresentar alguns problemas comuns, tais como:
  • O ciclista pode levar um tranco quando, simplesmente começar a pedalar e o motor pretender entrar com excessiva potência;
  • Ao iniciar um aclive mais abrupto a cadência cai, muito rapidamente, dizendo ao motor para entregar menos potência, quando o que você precisa, de fato, é de mais potência.
Assim, há uma tendência para que, num número cada vez maior de casos, com a finalidade de melhorar a performance do controle e o desempenho do motor, para que mais de um sensor sejam empregados, em combinação, para determinarem, concomitantemente, a quantidade de potência variável que o motor deve entregar ao longo da operação. Em certos casos chega-se a combinar as informações de até três senhores diferentes, instalados em pontos de sensoriamentos diferentes, para se obter uma performance de controle e um desempenho do motor ótimos.

Este é o caso, por exemplo, da proposta (e aposta) feita pela Yamaha em seus sistemas de e-bikes, num sistema muito mais recente em que ela combinou três sensores para obter a potência variando suavemente e sempre na direção certa. Os três sensores são:
  1. Um Sensor de Torque, que detecta a Força da pedalada;
  2. Um sensor de Cadência, que detecta a Velocidade de Rotações da pedalada, e;
  3. Um sensor de Velocidade que detecta a velocidade (da roda) da bicicleta,
Equipar a e-bike (pedelec) com os três sensores informando simultaneamente as suas condições para a unidade de controle, permite que o piloto seja apoiado pelo motor com uma assistência contínua e adequado em todas as condições de condução. O auxiliar contínuo e adequado é o que permite que o conceito de "potência variando suavemente e sempre na direção certa" durante a operação, uma vez que o acréscimo, principalmente, do sensor de torque resulta grande melhoria na resposta, propiciando uma melhor assistência com sincronismo através de ajuste fino do controle do motor.

Isso permite, inclusive, a liberação de variação suave, porém de intensidade elevada do conjugado (torque) tanto na partida, quanto na transição do terreno sem inclinação para um aclive mais acentuado, com níveis de assistência que podem ser ajustados em até 4 faixas: Alto, Normal, Econômico e Super-Econômico (além da assistência do motor poder ser, simplesmente, desligada), que podem ser selecionadas pelo ciclista enquanto enquanto ele pilota:


De fato, a introdução do Sensor de Torque que detecta a Força da pedalada, combinado com o sensor de Cadência, elevou as e-bikes pedelecs a um novo patamar de desempenho global, permitindo uma experiência de condução mais intuitiva.

Para entender isso, basta recorda o que já vimos em uma postagem anterior: Potência (P) é definida para ser igual ao Torque (τ) multiplicado pela Velocidade Angular (ϖ), (a velocidade de rotação), ou seja:



Assim, com o controlador tendo a sua disposição ambas as informações, a do Torque e a da Cadência ele tem como determinar a exata Potência que está sendo entregue.

Com o intuito de medir a quantidade de torque que está a ser aplicado durante o pedalar, que pode ser, opcionalmente, montado em várias formas diferentes: No suporte inferior da pedivela, para o eixo da pedaleira, montado para dentro do interior dos rolamentos, tornado invisível, garantindo assim uma perfeita proteção contra influências ambientais (vibrações, óleo, água, pó).

Ele pode sentir a força aplicada apenas por um dos pedais (em geral o pedal esquerdo), ou ambos pedais, fornecendo um sinal de saída que é proporcional à tensão aplicada pela pedaleira para a corrente, funcionando muito bem quando se necessita de um Modo Pedelec ágil, sem a preocupação da potência exata entregue pelo ciclista.

O sensor de torque trata-se de uma tecnologia que ainda está em desenvolvimento e, por isso, não há, ainda, um padrão aparentemente prevalecendo sobre outro. Você irá se deparar com termos como Sensor de Torque BB, Cartucho BB, e marcas como Thun, X-CELL, TDCM, ISIS, etc, cada qual requerendo uma determinada adaptação da pedaleira e adaptação da programação do controlador.

Opcionalmente, podemos nos deparar, também, com um arranjo de uma roda intermediária acionando um braço de torção como sensor de torque medido diretamente na corrente.

Opcionalmente, ainda, podemos ter um sensor que mede o torque do eixo da roda traseira, de modo que o sensor de torque pode estar perto da ranhura da extremidade do garfo no quadro da bicicleta onde o eixo da roda traseira está ligado (em geral, um medidor de tensão no eixo traseiro, construído junto ao motor do cubo, quando se opta por ter um sistema de tração direta, com um motor direct-drive.

De qualquer forma, combinando tais sensores com os componentes eletrônicos e com o programa acompanhados no controlador, tem-se um sistema quase ideal para a operação da e-bike. O sistema ótimo é alcançado quando um sensor de torque é combinado com um sensor de cadência e um sensor de velocidade. Este trio é capaz de dar ao controlador do motor um quadro completo de como você está conduzindo a e-bike para que ele possa entregar a potência, apenas na quantidade certa e no momento certo.

Pesquisando, chamou-me a atenção, em especial, um sensor que é capaz de medir o torque e a cadência da pedaleira, concomitantemente, podendo ele ser empregado como único sensor, montado no suporte inferior (eixo da pedaleira), como medidor de potência. Eu suponho que medir potência possa ser realizado, também, com os demais sensores vistos anteriormente, mas, isso só é alegado, explicitamente (e fica claro pela explicação do funcionamento) para o caso desse sensor, o Ergomo® Pro Sensor, cujo fabricante apresenta um Manual de Instruções de Operação envolvendo todo o sistema bastante detalhado.

Medições ideais do torque e da velocidade angular do pedal são determinadas ambas no mesmo local e a potência é calculada pelo controlador usando a fórmula: P = τ · ω [em W]. Isso posto, evidentemente que trate-se de um sensor de Potência (e não de apenas Torque). Isso cria uma vantagem não apenas por reduzir as peças necessárias, como tende a tornar a programação do controlador facilitada, mas sem levar em conta o custo de aquisição relativo ao mesmo (que me desconhecido), de modo que eu o estou apresentando por ele ser tecnicamente interessante e fácil de explicar.

O Ergomo® Pro Sensor possui uma estrutura construtiva que inclui, de fato, dois sensores óticos S1 e S2. Os sensores S1 e S2 produzem sinais de onda quadrada, simultaneamente, e de uma mesma frequência, os quais são gerados a partir dos anéis transmissores G1 e G2. Apesar da mesma frequência, as formas de onda dos dois sinais estão em uma relação de fase φ.

Quando um torque τ é aplicado sobre o eixo, o eixo é torcido por um ângulo de γ, enquanto a posição do ângulo de fase φ é proporcionalmente alterada. A posição de fase deslocada φ determina o torque τ.

Já a velocidade angular (ω), é determinada pela frequência dos pulsos (de S1 ou de S2), que são produzidos na taxa de 72 pulsos por volta da pedaleira.

Assim, temos o torque (τ) e a velocidade (ω) produzidos e, com isso, o controlador pode determinar a potência.

O torque pode ser medido na faixa de 0 ~ 300 N·m e a cadência na faixa de 20 ~ 250 rpm, o que bastante adequado (e com folga) para o caso de uma e-bike com potência do motor limitada a 350 W e um ciclista de elevado desempenho de bicicleta, uma vez que os melhores esforços humanos para produção de energia ao longo de uma hora em uma bicicleta são em torno de 300 ~ 400 Watts (ver How many Watts can you produce?), de modo que, mesmo picos de torque (motor + ciclista) dificilmente superam a marca de 200 N·m, enquanto a cadência dificilmente alcança 120 rpm.

Uma desvantagem desse sensor é a sua baixa sensibilidade: ângulos de torção são medidos a partir φ = 0,0025°, e isto é equivalente a uma força de F = 2,5 N sobre o pedal. Assim, um torque 80 N·m, que corresponde a uma força de 320 N aplicada através de um pedal de 25 cm provoca um deslocamento de fase de meros 0,32° (um valor deveras pequeno de defasagem para ser convertido num relativamente grande valor de torque), A precisão da medição é de aprox. 1%.

Para um controle ótimo, o Ergomo® Pro Sensor precisa trabalhar em conjunto com apenas mais um sensor: o sensor de velocidade (veja na imagem o Speed Sensor) que, por meio de uma única peça de imã a ser instalada na roda traseira, produzirá um sinal de tão somente um único pulso por cada rotação daquela roda, o que permite ao controlado realizar uma adequada medição da velocidade dela.

Controle do Motor em E-Bike tipo Potência sob Demanda Precisa de Sensores?


As desvantagens da comutação sensorless (sem sensores) são que requer um algoritmo de controle relativamente complexo e, quando a magnitude das FCEM induzida se torna baixa, ele não consegue suportar as velocidades baixas do motor.

E-bikes exigem torque inicial alto e quando uma aplicação de um motor de imãs permanentes exige alto torque, quando o motor está funcionando em baixa velocidade, ou quando o motor está se movendo na partida, as técnicas de comutação por meio de sensores Hall é uma escolha adequada.

Um motor usado em uma aplicação de bicicleta elétrica, por exemplo, exige torque inicial elevado e, portanto, ele é, sim, uma aplicação perfeita para a comutação por meio de sensores Hall.

Além disso, ambas as duas técnicas de aplicação de tensão (Senoidal e Trapezoidal) podem ser aplicadas, com base na configuração dos enrolamentos da fonte para a motor:
  • Senoidal: a tensão sinusoidal é continuamente aplicada às três fases. A tensão senoidal proporciona uma rotação do motor suave e menores ondulações.
  • Trapezoidal: a tensão CC é aplicada a duas fases de cada vez, e a terceira fase permanece inativa. O algoritmo para a tensão trapezoidal é menos complexo de implementara. A fase inativa está a gerar a FCEM induzida pelo ímã do rotor que está passando pela fase inativa (desenergizada) e fornece os dados do FCEM quando ela está passando no cruzamento de zero de seu valor de magnitude.
Para entender melhor como a "comutação por sensor Hall" funciona, vamos ver como ele é implementado com um motor de dois pólos simples. Seis diferentes estados de comutação são necessários para fazer tal motor rodar o rotor em uma revolução:

Relação Sequencial entre os Estados de Saídas dos Sensores Hall e as Comutações das Fases:



Operações de comutação das fases (Gif animado adaptado, corrigido e atualizado, a partir do site da Townbiz, a quem agradeço):


Controle de velocidade em em Malha Fechada

No estator do motor de dois pólos há apenas três enrolamentos, os quais podem estar conectados em um arranjo em estrela (Y), de modo que cada um dos enrolamentos têm um de seus terminais conectados a um ponto comum (centro da estrela). As formas de ondas das tensões de fases ФA, ФB e ФC que estão representadas na figura animada acima, são, apenas, para efeito ilustrativo (elas ocorreriam assim apenas caso o PWM fosse desligado).

O Estado 2, por exemplo, é definido como posição 60°, porém, 60° é, na verdade, o centro de um intervalo que vai desde 30º até 90°. Ao longo de todo esse intervalo (de 30° a 90°) as condições são as seguintes:
  • A fase ФA está sendo alimentada e conduzindo, com a corrente sendo puxada, saindo pelo terminal do respectivo enrolamento (dai a cor azul, pois, com a corrente saindo, significa que a tensão presente no terminal de acesso desse enrolamento é negativa em relação ao ponto comum (o centro da estrela);
  • A fase ФB está sendo alimentada e conduzindo, com a corrente sendo empurrada, entrando pelo terminal do respectivo enrolamento (dai a cor vermelha, pois, com a corrente entrando, significa que a tensão presente no terminal de acesso desse enrolamento é positiva em relação ao ponto comum (o centro da estrela);
  • A fase ФC está morta (não conduzindo corrente 5).
Sendo assim, para este intervalo (de 30° a 90°) vamos olhar, apenas para as fases ФA e ФB, que são as que estão conduzindo: elas estão conduzindo em série, ou seja, conduzem a mesma corrente. Contudo, para que elas estejam, de fato, conduzindo, é preciso que duas chaves (dois transistores MOSFETs) estejam, simultaneamente ativados: um na parte alta da Ponte de MOSFETS, empurrando a corrente para as fases, e outro puxando a mesma corrente, na parte baixa da Ponte de MOSFETs.

Isso é uma coisa que ocorrerá, de modo semelhante, para todos os demais estados subsequentes, ou seja, para todos os demais intervalos, Só que ao longo do tempo o Controlador vai mudando as chaves que são ativadas (num momento mudando a chave que está ativada na parte alta da Ponte, noutro momento mudando a chave que está ativada na parte alta da Ponte).

De qualquer modo, em qualquer intervalo, há sempre um certo par de chaves MOSFETs é que estão ativadas, mas a mudanças delas resulta na mudando do par de fases que estão conduzindo simultaneamente. Isso funciona por seis Estados, fechando um período completo, e ai, volta a se repetir, ou seja, é cíclico.

Se fosse só isso os desenhos das formas de ondas da figura ilustrativa animada estaria correto, mas ai entra a ação do PWM, que modifica tais formas. Vejamos:

O controle de velocidade em malha fechada é implementado usando um regulador PI (Proporcional Integral, ver na próxima figura), que funciona por atuar visando, sempre, a eliminação de qualquer erro entre a velocidade definida pelo potenciômetro (ω desejada) e a velocidade real do motor (ω atual).

Um erro pode acontecer, por exemplo, quando há mudança na condição do terreno por onde a e-bike será (por exemplo, mudança de terreno sem inclinação para começar um aclive). No aclive a velocidade da e-bike tende a cair e o erro (entre a ω desejada e a ω atual), pois, é a ω atual que esta a cair. Contudo, um erro pode aparecer, também, num terreno plano, pois, se o ciclista acelerar (manipulando o acelerador) é a ω desejada que está a subir.

A saída deste regulador PI altera o ciclo de trabalho do PWM, mudando assim a tensão média para o motor, e, finalmente, alterando a entrega de potência. O regulador PI ajusta a velocidade à mesma taxa que a frequência do sensor de Hall (um dos três sensores).


Como isso é feito? As tensões de fase para o motor são recortadas por ação dos pulsos do PWM, Os pulsos do PWM são multo rápidos (o PWM opera a uma frequência muito alta) de modo que, a cada intervalo (como aquele de 30° a 90°, por exemplo), muitas dezenas de recortes (pulsos do PWM) podem ocorrem. Variando-se a largura dos pulsos (ou seja, o ciclo de trabalho) do pulsos de PWM, teremos recortes mais largos ou recortes mais estreitos. Isso afeta o Valor Médio das tesões de fase que estão sendo aplicadas para o motor.

O controle de comutação trapezoidal é o mais simples (em contra ponto ao controle de comutação sinusoidal) pois ele permite que apenas uma chave MOSFET seja a responsável por aplicar os recortes (lembre-se que dissemos que as chaves MOSFETs estavam operando de par em par).

Ou seja, porque a condução é feita em série, pois, temos um MOSFET que empurra a corrente para um enrolamento de fase do motor, que está ligado pelo centro da estrela ao outro enrolamento de fase do motor, que por sua vez está ligado a um outro MOSFET que está puxando a mesma corrente, se nós aplicarmos os recortes de PWM a apenas um dos dois MOSFETs que estão em operação num dado intervalo de comutação. O segundo MOSFET (que trabalha em par com o primeiro) fica dependente do primeiro, pois ele não poderá conduzir sem que o outro também conduza.

Assim, é bastante comum a arquitetura em que a parte os MOSTETs da parte inferior da ponte recebam, apenas, pulsos que são devido aos intervalos de COMUTAÇÃO, ao passo que, os MOSFETS da parte superior da ponte recebam os pulsos de PWM, tal como o exemplo apresentado na figura a seguir:

Diagrama da Ponte de MOSFETs Trifásica do Controlador de Motor KU63 (Made in China)

o controle de comutação sinusoidal (ou senoidal) é mais complexo, pois, os recortes aplicados pelo PWM têm de ser controlados, de forma contínua, em todas as três fases. Isso reque comutação de PWM complementar. Com este esquema, o par de transistores MOSFET (no lado de baixo da ponte e no lado alto da ponte) estão sempre em estados de recorte opostos para cada fase do motor.

Assim, eu vou mostrar as formas de onda das correntes de fase apenas para o caso de controle de comutação trapezoidal (que é o mais simples, portanto mais barato, e é o que se aplica para os casos dos controladores para as e-bikes).

Nas formas de onda mostradas aparecem, também, os sinais aplicados à porta (gate) dos MOSFETs e, então você pode ver o efeito do PWM recortando (pulsos rápidos). Você pode ver, ainda, que, do par de fazes que conduzem simultaneamente, apenas o MOSFET ligado a uma delas esta recebendo os pulsos de recorte de PWM (formas de onda de cor verde na figura a seguir), enquanto ao outro MOSFET cabe recebe um pulso largo estável, sem os recortes de PWM (formas de onda de cor vermelha na mesma figura).


Na figura acima (Controle da Comutação Trapezoidal do Motor) temos: As três correntes de fase do motor estão, cada qual, representadas pelas formas de onda de cor azul, os respectivos pulsos de ativação dos MOSFETs, no lado alto da ponte estão em vermelho, enquanto os pulsos de ativação dos referente aos seis diferentes estados de comutação por rotação, aplicados aos MOSFETs no lado baixo da ponte estão em cor verde.

Alguém mais atento poderia, agora, indagar: Mas os degraus da comutação e os recortes de PWM não deveriam aparecer, também, nas formas de ondas das correntes de fase? (e, no entanto, vê-se que elas crescem e decresce em formas de rampas, formando figuras trapezoidais, sem degraus e sem recortes!!!)

Existe uma explicação para isso: os enrolamentos do motor são indutores (elementos que têm a propriedade de indutância) e, assim, os mesmo reagem, naturalmente, a qualquer variação brusca da corrente. Quando comutamos indutores, mesmo que a tensão sobre eles varie bruscamente, eles tendem a causar o "alisamento" da corrente (quanto maior a Constante de Tempo do indutor, mais ele alisa a corrente), de modo que as formas de ondas apresentadas são muito próximas das reais.

Os recordes acabam refletindo, sim, na inclinação das rampas, fazendo a corrente, por exemplo, crescer mais rapidamente ou mais lentamente. Deste moto, os recortes afetam a corrente média das fases, mas sem que apareçam recortes (pulsos). Vale notar que a forma de onda trapezoidal tende a não ficar muito longe da forma de onda senoidal pura. Com comutação de forma senoidal pura, o motor operaria com muito pequena trepidação, mas com a comutação trapezoidal uma trepidação ligeiramente maior é observada (mas, de qualquer modo, motores de imãs trepidam um pouco, por natureza).

Em geral, nesta aplicação (e-bikes), a operação em Malha Aberta (isto é, sem sensor ou sensorless) deve, também, estar prevista, e ser selecionada no software por padrão, porque qualquer ciclista de e-bike será capaz de controlar, também, por si só, a velocidade dela. A vantagem da comutação baseada em sensor Hall é que o algoritmo de controle é simples e fácil de entender (ao contrário da comutação senoidal).

A comutação baseada em sensor Hall também tem a vantagem de permitir controlar o motor (com bom torque) em velocidades muito baixas (coisa impraticável sem o emprego de sensores). As desvantagens, obviamente, são que a sua aplicação requer ambos, ter ao menos um trio de sensores Hall dentro da carcaça do motor e hardware adicional para realizar a interface do sensor (o que implica em custos adicionais).

Alguns produtos típicos disponíveis no mercado para a conversão de bicicletas comuns em e-bikes são controladores que podem trabalhar tanto com motores com os sensores Hall, quanto com motores sem sensores. Contudo, alguns funcionam, apenas, para motores com sensores Hall, como, por exemplo, o caso mostrado na figura abaixo, no qual a variação da velocidade deve ser provida por um acelerador (throtlte) pela variação desde 0 V até 4 V.

36V 17A 350W Silvery Electrocar Brushless Motor Controller Accessories for Electric Scooters for Electric Bicycles

Notas:


    1. FCEM é um acrônimo relativo ao termo "Força Contra Eletromotriz" que é um fenômeno relativo a Física da eletricidade (ou dos fenômenos eletromagnéticos) que significa uma força eletromagnética (uma tensão elétrica) que surge sobre um elemento de circuito elétrico denominado indutor (ou elemento indutivo, cuja principal característica éopor-se a qualquer variação brusca na corrente elétrica que flui por ele), em apenas parte do seu processo operativo. Como todo elemento armazenador de energia, o processo operativo do indutor (que acumula e armazena energia em seu campo eletromagnético) envolve, sempre, duas etapas:
    • A de receber energia (etapa de carga ou de carregamento), e;
    • A de ceder energia (etapa de descarga).
    FCEM ocorre, somente, durante a etapa de descarga, e se manifesta na forma de uma tensão que surge repentinamente sobre o indutor, e que é sustentada pelo próprio indutor, pelo fato dele ter armazenado energia durante a etapa de carregamento, permitindo que ele opere como fonte de tensão na etapa de descarga. A tensão (FCEM) tem a mesma intensidade, porém polaridade contrária, com relação á tensão da fonte que, antes, alimentava o indutor durante a etapa de carga, Por ter polaridade contrária, dai vem o termo Força Contra Eletromotriz. Havendo um caminho para circulação de corrente, na etapa de descarga a corrente pelo indutor fui no mesmo sentido em que fluía enquanto a fonte o alimentava (na etapa de carga), e com a mesma intensidade máxima em que ela se encontrava antes. A diferença é que, agora, é o próprio indutor que está operando como fonte de alimentação, fornecendo corrente, o que o faz ele ir se descarregando aos poucos. Assim a corrente irá decrescendo (aos poucos, pois o indutor se opõem a qualquer variação brisca da corrente), até que, com o indutor já plenamente descarregado, a corrente, em fim, cessa, desaparecendo, também, a FCEM.

    Se você achar que precisa conhecer melhor o processo envolvendo a carga e a descarga do indutor e sobre a sua ,FCEM consulte sobre isso nas NOTAS da postagem do artigo Máquinas Elétricas de Imãs Permanentes (Parte 1/2);                                                                                                                                                                           
  1. O acrônimo PAS tem sido empregado para designar, ainda, outros significados no mundo das e-bikes. Em algum contexto PAS pode significar, por exemplo, Power Assist System, enquanto em outro pode significar, também, Pedal Assist Systems, pois, cada autor ou fabricante se apropria desse acrônimo da sua própria maneira e interesse;                                                                                                                                   
  2. Em e-bikes mais antigas (primitivas) empregou-se um mais simples Sensor Indutivo, capaz de gerar pulsos (não retangulares) pela detecção da proximidade (e afastamento) do material ferroso com o qual são feitas as próprias coroas da transmissão, uma vez que elas apresentam recortes na forma de seus desenhos. Esta me parecia uma solução melhor do ponto de vista custo efetivo, pois dispensava o emprego dos imãs permanentes;                                                                                                 
  3. Para entender melhor o significado de Cadência (ou taxa de pedalagem) no contexto das bicicletas, leia o artigo anterior titulado Bicicletas Elétricas (e-Bikes) e Ciclomotores Elétricos (e-Mopeds) - Parte 2/3, e faça  nele a busca por tal verbete. Alguns fabricantes de partes para e-bikes, principalmente dentro do contexto de aplicação de Motor do Cubo da Roda (Hub Motor) também costumam empregar a denominação Direct Pedal Assist Sensor (Sensor de Assistência Direta ao Pedal) ou Crank Sensor (Sensor do Pedivela) para o sensor de cadência (sensor PAS). Entretanto, a que se tomar o cuidado de observar que o empregos dessas designações estão mudando rapidamente com o tempo, de modo que, ao se falar em Direct Pedal Assist Sensor (Sensor de Assistência Direta ao Pedal) ou Crank Sensor (Sensor do Pedivela) pode se estar falando de um sensor mais complexo e completo, que integra, em si, ambas funções: sensor torque e de cadência (que é algo que vem ao encontro da real necessidade da aplicação de e-bike Pedelec);                                                                                                                                                                 
  4. Porque os enrolamentos de fases dos motores são indutores (elementos que têm a propriedade de indutância) reagem, naturalmente, a qualquer variação brusca da corrente, quando comutamos indutores, mesmo que a tensão sobre eles varie bruscamente, eles tendem a causar o "alisamento" da corrente (e quanto maior for a Constante de Tempo (L / R) do indutor, mais ele alisa a corrente. Assim, a corrente, de fato, nunca permanece morta de modo estável, mas, antes, nós dizemos que ela está morta naquele intervalo de tempo em que, exatamente no meio dele, a corrente, variando de valor, passa por seu valor zero (portanto, a corrente média naquele intervalo é zero). Enquanto as tensões são comutadas com variações bruscas, as correntes crescem e decresce em formas de rampas, formando figuras trapezoidais (sem degraus, sem variações bruscas). 





sábado, 16 de maio de 2015

Motor CA Síncrono ou Motor CC Sem Escovas???


Ou, simplesmente, Máquina de Imãs Permanentes?

Toda vez que se fala em máquinas elétricas (motores) para Veículos Elétricos, todos os especialistas fazem referência a um balanceamento de razões para a escolha entre apenas dois tipos:
  • Motor CC Sem Escovas, e;
  • Motor de Indução (CA trifásico).
Todos se esquecem, porém, de mencionar que um dos VEs que mais tem sido vendido, mundialmente, desafia estas duas escolhas. Assumido oficialmente, o Nissan LEAF emprega "um avançado Motor CA Síncrono de 80kW".

Só que aquilo que a Nissan (e quase ninguém) se preocupou em explicar (claramente, até agora) é que no confronto entre (essas duas tecnologias atuais) o que ela chama de "Motor CA Síncrono" e o que se chama de "Motor CC Sem Escovas", a fronteira que há é extremamente tênue (se é que pode-se dizer que realmente há uma fronteira, pois, nessa questão existe uma "região de depleção", em que ambos os conceitos se difundem ... e se confundem).

Por que discutir comparações entre motores CC sem escovas e motores CA síncronos?

Porque motores CC sem escovas são muito semelhantes aos motores CA síncronos, no que diz respeito às suas construções: ambos têm estator com enrolamentos elétricos em arranjo de ligação trifásica, e igualmente eles criam campos magnéticos rotativos, que resultam na produção de torque em um rotor magnético dotado de ímãs permanentes. 

No entanto, sobre a principal diferença, o que muitos alegarão é que:

"Os motores CA síncronos desenvolvem uma FCEM (Força Contra-eletromotriz) 1 sinusoidal, em comparação com uma forma retangular, ou trapezoidal, da FCEM  para os motores CC sem escovas."

Todavia, esta argumentação passou a ser quebrada (tornando-se falaciosa), por exemplo, com a introdução dos motores CC sem escovas sem ranhuras (ou seja de estator não ranhurado). Os motores sem ranhuras são normalmente concebidos com torque de saída senoidal, que produz uma distorção desprezível, em vez de uma saída de tensão trapezoidal.

A saída sinusoidal reduz a ondulação do torque, especialmente quando usado com um controlador sinusoidal, o que significa dizer que o motor CC sem escovas de estator não ranhurado, não apenas aceita bem a comutação senoidal, mas, ele, de fato, praticamente a exige.

Nós voltaremos a falar da técnica comutação senoidal, mais a frente, pois é justamente a partir da opção de escolha dela que torna o motor CA síncrono e o motor CC sem escovas são, exatamente, a mesma máquina. M as não sem antes entender que comutação senoidal é apenas uma opção que se contrapõe a outra opção que é a técnica de comutação trapezoidal.

Escolher a técnica de comutação trapezoidal não transforma, em si, um motor CA síncrono em motor CC sem escovas, assim como a escolha da técnica de comutação senoidal, também não transforma um motor CC sem escovas em motor CA síncrono. Todavia, para evitar maiores confusões, muitos autores preferem fazer crer seja justamente esta a fronteira ideal que separa estes dois conceitos de máquinas elétricas.

Mas antes, vamos avaliar mais alguns argumentos que são utilizados que insistem em querem estabelecer uma fronteira divisória rígida entre o motor CA síncrono e o motor CC sem escovas, para que você perceba que, de fato, tudo é apenas uma questão de postura errática, tão arcaica e contraproducente quanto aquela que envolveu a disputa e a separação entre Thomas Edison e Nikola Tesla. Assim, alguns ainda lhe dirão:

"Motores síncronos "verdadeiros" são considerados velocidade única, um submúltiplo da frequência rede elétrica. A velocidade do motor de CC sem escovas não é fixa, a não ser quando ele é acionado por uma malha fechada de fase, acoplado a uma frequência de referência."

Esse argumento que apela para a "verdade sobre motores síncronos" serve, apenas, de insulto contra os motores CC sem escovas, por insinuar (na via de volta) que eles sejam "motores síncronos falsos", quando eles operam, de fato, o tempo todo, com velocidade síncrona.  

Além do mais, motores síncronos sempre tiveram problemas com sua partida e, quanto maior era a máquina, maior o problema, pois, assim, maior se torna a inercia do rotor, que é o que o impede dele conseguir acelerar, de zero até a velocidade síncrona, sem a ajuda de algum mecanismo suplementar. Deste modo, a medida em que a comutação eletrônica foi sendo desenvolvida, o motor síncrono também passou a se beneficiar dela, primariamente, para resolver este seu antigo problema de partida.

Assim, de longa data já se tem sabido que também os motores síncronos pequenos podem ser iniciados por ir se aumentando a frequência de acionamento, desde zero até a frequência de trabalho final, com os sinais multifásicos (em geral, trifásicos) gerados por circuitos de comutação de eletrônica de potência. Ora, mas não é exatamente isso que são conhecidos como motores CC sem escovas?

Outro argumento que você pode ouvir é o que diz:

"Os motores síncronos são, normalmente, dimensionado para tamanho grande multi-quilowatt, muitas vezes com rotores eletromagnéticos sofisticados, enquanto motores CC sem escovas tendem a ser pequenos, de alguns watts para dezenas de Watts, com rotores de ímanes permanentes."

Este argumento é tão frágil, que ele pode começar a ser derrubado, simplesmente por extrairmos contra ele uma curta frase que se encontra no tópico Veículos Elétricos Híbridos da Wikipédia (de língua inglesa), que diz: A maioria das máquinas elétricas usadas em veículos híbridos são motores CC sem escovas (internacionalmente referido pelo termo BLDC Motor).

Não é difícil perceber que, mesmo em tratando-se de veículos híbridos (e não os puramente elétricos) o motor desses carros não são tão pequenos como algumas dezenas de Watts, mas, certamente atingem as dezenas de kW, como, por exemplo, o mundialmente mais conhecido deles, o Toyota Prius. O Prius utiliza, assumidamente, motores CC sem escovas, com base em ímãs permanentes que, na versão plugável mais atual deste carro são dois motores (transeixos), um de 60 kW e outro menor, de 42 kW.

Mesmo para aplicações em dispositivos de mobilidade individual mais simples (e ultraleves), como scooter e patinete elétricos, você demandará a necessidade de emprego de um motor com potência de alguns (ou de mais de uma dezena) de quilowatts e, motores BLDC (CC sem escovas) deste porte, com todos os seus atributos vantajosos, estão disponíveis no mercado, facilmente, para atendê-lo.

Assim, o único argumento que pode ficar em pé quando se fala em diferença estrutural na comparação entre uma máquina que é um Motor CA Síncrono e outra que é um  Motor CC Sem Escovas é o fato de que:

Motor CC Sem escovas é, tipicamente, construído com o número de polos do estator diferente do número de polos do rotor, enquanto o Motor CA Síncrono precisa  ter o número de polos do rotor e do estator em igual número2.

Já, quanto ao caso de se colocar de volta enrolamentos no rotor para produzir os campos, em vez de empregar os ímãs permanentes, eu apenas pergunto: onde isso tem sido fabricado, assim, ultimamente? No passado, grandes ímãs permanentes eram muito dispendiosos, bem como perigosos e difíceis de montar. Por vezes isto favoreceu campos electromagnéticos para os rotores de grandes máquinas. 

Hoje, os ímãs permanentes continuam caros, e a sua comercialização possui, ainda, lamentáveis complicações geopolíticas. Todavia, o produto energia dos ímãs permanentes disponíveis aumentou muito, para um mesmo custo (que já era alto) para que se pudesse continuar a ignorá-los. Por isso, aonde quer que se fale em velocidade síncrona e variável, o emprego desses ímãs, nas máquinas elétricas, prevaleceu.

Além do mais, ter que alimentar com corrente elétrica as bobinas instaladas no rotor de uma máquina é tudo o que há muito tempo ninguém deseja mais fazer, pois, isso faria voltar os mesmos motivos que tornaram o velho motor CC com escovas uma máquina inexoravelmente obsoleta (coisa que nunca ocorreu com a máquina CA síncrona).

Uma máquina que pode precisar parar de funcionar, no meio da atividade de produção, por causa de uma escova gasta, é muitíssimo mais inimiga da economia do que uma máquina que, por empregar ímãs que são caros, tenha um custo inicial de aquisição maior. Definitivamente, essa é uma arquitetura que ficou para trás, e ela pertencia ao que se chamava de motor CC com escovas, e não motor CA síncrono. Por isso, os Motores CC com escovas (ou ditos "escovados") estão fadados a extinção.

Por sorte, os motores de ímãs permanentes estão melhorando continuamente, diminuindo nos custos devido aos avanços nos ímãs, no projeto estrutural, e no controle, e passaram a proporcionar uma maior densidade de potência e eficiência em comparação com outras arquiteturas, se tornando cada vez mais populares.

Então, quando nós chamamos uma máquina elétrica com enrolamento de arranjo multifásico no estator e ímãs permanentes no rotor de motor CA síncrono, ou de motor CC sem escovas, podemos estar, simplesmente, querendo dar nomes diferentes para, estruturalmente, a mesma máquina, e o que mantém as discussões acessas em torno desta questão me parecem mais com orgulho e com vaidade, ligado, obviamente, a interesses comerciais, do que há qualquer outra coisa.

Isso não seria uma causa digna de uma única ruga de preocupação se não fosse o fato de que ela tem gerado confusões e dificuldades para todos aqueles que se encontram em fase de aprendizagem do conhecimento técnico e tecnológico pertinente a tais máquinas elétricas. 

Muito mais inteligente, me parece, seria nós esquecermos ambas essas duas denominações conflitantes, e passarmos a usar uma terceira, que a mim me parece muito mais prática e interessante. A proposta (pacificadora) seria para o emprego da denominação Motor Eletronicamente Comutado. Assim, já nem mesmo importaria mais, se a opção for pela técnica trapezoidal ou sinusoidal de comutação, de modo que sob ambas, a máquina continuaria a ser chamada, simplesmente, motor eletronicamente comutado.

Todavia, não obstante os esforços de muita gente de boa fé e vontade, esta denominação comum também vem encontrando certa resistência e, pior, de ambas vertentes defensoras das diferentes denominações, tanto do motor CA síncrono, como do motor CC sem escovas, pois ela creditada como tendo origem também em um "clubinho", ou seja, em um outro grupamento de profissionais, de postura não menos sectária do que os demais, que é o das áreas de aquecimento, ventilação, ar-condicionado e refrigeração industrial e predial.

Deste modo, na verdade, eu não estou aqui com intuito de defender nenhuma dessas três denominações: chamem tal máquina como vocês bem entenderem chamar, pois hoje eu já sei, de antemão, que quando você disser motor CC sem escovas, ou motor CA síncrono ou, ainda, motor eletronicamente comutado, eu devo fazer, mentalmente, a mesma imagem.

Todavia, eu tinha que dizer tudo isso com a sincera esperança de que sirva de alguma ajuda para as pessoas que se encontram em fase de aprendizagem, para que elas não fiquem tão confusas, e nem se sintam em dificuldades, como eu mesmo, um dia, fiquei e me senti.

Enfim, quando a Nissan fala em ter empregado "um avançado Motor CA Síncrono de 80kW" no Nissan LEAF, ela está falando a verdade mas, se eu apagar isto e reescrever "um avançado Motor BLDC de 80kW", eu o faria sem ter medo de errar. Entretanto, mais importante de tudo, e, talvez ai resida a razão pela preferência denominacional da Nissan, seria explicar que o projeto do sistema de tração do LEAF fez uma escolha pela técnica de comutação sinusoidal, em vez da trapezoidal.

Como eu já havia dito, nem mesmo a escolha sobre estas duas opções de técnicas de comutação justifica denominar a mesma máquina elétrica por termos diferenciados, mas, de fato, o emprego de uma ou de outra técnica de comutação resulta em mudança sim, se não, necessariamente, na máquina elétrica, em si, mas, sim, na lógica (o algorítimo de controle e a técnica de PWM), combinada ao tipo de sensoriamento que é requerido pelo (ou escolhido para o) controle do circuito de comutação eletrônica.

Assim, (só de birra) nesta minha redação eu vou adotar a denominação singela Motor de Ímãs Permanentes (ou, mais apropriadamente, Máquina de Ímã Permanentes, porque, eventualmente, ela gera e regenera, também), e espero que vocês entendam que eu estou falando, tanto do motor CA síncrono, quanto do motor BLDC (quanto de máquinas denominadas por outros acrônimos associados a diversas variantes taxonômicas, tais como: PMCA, PMSM, ECM, etc).

Deste modo, acreditando deixar discussões e complicações inúteis e impertinentes para trás, é disso, então, que passamos a falar agora: a Teoria de Controle do Motor de Ímãs Permanentes, que, para ser realizada, exige, sempre, algum tipo comutação eletrônica (muito embora os meus amigos, lá em Portugal, empreguem comutação electrónica, e tudo funciona, de mesmo modo, perfeitamente bem).

Um Pouco Mais Sobre o Motor de Ímãs Permanentes e Sua Teoria de Controle:


Máquina de Ímã Permanentes (Motor BLDC) de Rotor Externo (Outrunner)
Não obstante o fato de não ser uma regra, normalmente os motores de ímãs permanentes têm enrolamentos em um arranjo trifásico, que são conectados em estrela (Υ) ou em delta (Δ). Assim, a maioria dos motores de ímãs permanentes tem três terminais para alimentação de  energia (como mostrado na Figura ao lado). Estes terminais de alimentação são conectados para pontas do arranjo dos enrolamentos do estator, que precisam de uma ponte inversora trifásica adequada para realizar a comutação eletrônica (dai a origem da denominação Motores de Comutação Eletrônica) cujo sequenciamento resulta no campo girante do estator. Por sua vez, os ímãs permanentes são alojados posicionados na periferia do rotor, de uma tal forma que os polos fiquem de frente à face do estator, alternando, ao longo da circunferência do rotor, entre polo norte e polo sul.

É importante (e curioso) notar que, o rotor, que é sempre o subconjunto que gira, nem sempre é concebido para ser a parte mais interna da máquina (motor de rotor interno, popularmente conhecido como motor inrunner), mas, podendo ser, também, sem problema algum (conforme mostra a figura abaixo) concebido para ser a parte mais externa da máquina (motor de rotor externo, popularmente chamado de motor outrunner).
Exemplo de máquina de imãs permanentes (motor BLDC, motor CC sem escovas) de alto desempenho (no caso, um motor outrunner (rotor externo) para modelismo) e suas partes componentes.

Alguns atributos atualmente (mais) desejáveis para as partes componentes de tais motores são:
  1. Tampas da carcaça em liga de alumínio de alta qualidade produzida nas últimas máquinas de usinagem CNC, dourada, com n furos de refrigeração em ângulo que bombeiam ar através do motor enquanto ele é acionado;
  2. Furos de montagem traseira, roscados, e com dois diferentes espaçamentos entre buracos para caber numa variedade de aplicações;
  3. Base de montagem de alumínio usinado (chapa traseira) em estilo cruz com quatro parafusos de montagem incluído em cada motor (adaptador de hélice eixo de rosca em alguns modelos específicos);
  4. Ímãs permanentes com base em NdFeB, especialmente concebidos com classificação de alta temperatura para operação livre de problemas, para funcionar até a 200 °C (392 °F);
  5. Acabamento em pintura por eletrodeposição (Electro-Coat) anticorrosiva durável no anel de fluxo para durar por longos anos. Informações básicas, como o número do modelo em cada motor são gravados a laser (em vez de usar algum adesivo) para ajudar a manter o balanceamento do motor (especialmente importante para motores outrunner);
  6. Anel de bloqueio traseiro mantém o espaçamento dos ímãs e também ajuda a reforçar a extremidade traseira do conjunto do anel de fluxo;
  7. Lâminas de estator de alta qualidade (grau M19), revestidos com epóxi sobre a superfície interna para evitar curtos de enrolamento. Lâminas do estator de 0,20 mm usadas nos motores de diâmetros externos menores, e lâminas de estator de 0,35 mm, em motores de tamanhos maiores, para dar o máximo de eficiência e um mínimo de perdas por correntes de Foucault;
  8. Fiação classificada de alta temperatura 180° C (ou superior) é utilizada para os enrolamentos do estator dos motores para prover suporte a uma temperatura de operação elevada, minimizando o risco de queimar os enrolamentos do motor. Se os motores são máquinas ranhuradas, em geral, isso garante bobinamento mais consistente (ver também nota 3 no rodapé da postagem);
  9. Rolamentos blindados de alta qualidade são usados para apoiar o eixo do motor;
  10. Adesivos de alta temperatura são usados para proteger as bobinas do estator e impedi-las de se deslocarem provocando compressão ou curto-circuito. Fiação de ligação externa já vem com três conectores estilo bala, macho e fêmea, para conectar, facilmente, ao comutador eletrônico.
Motores de ímãs permanentes (chamados motores BLDC) são, essencialmente, motores CA síncronos, com rotores de ímãs permanentes, que são alimentados por uma fonte de CC, que flui corrente através de um inversor (fonte chaveada em ponte), que produz um sinal elétrico CA para acionar o motor, porém, não implicando, necessariamente, em uma forma de onda senoidal mas, sim, numa corrente bidirecional, com nenhuma restrição em forma de onda. Assim, Os estados das chaves (semicondutores de potência MOS-FET) da ponte inversora são comutados de modo a se controlar o sentido do fluxo da corrente através dos enrolamentos.


Voltando (mais uma vez) a velha discussão, ao dizer "que são alimentados por uma fonte de CC" também é um outro argumento usado para alegar a preferência pela denominação Motor CC Sem Escovas, em detrimento de Motor CA Síncrono. Todavia, se isso fosse aceitável, nem mesmo o motor de indução (ou motor CA trifásico, aquele com um rotor muito simples que é composto de barras de material condutor que se localizam em volta do conjunto de chapas do rotor, curto-circuitadas por anéis metálicos nas extremidades, popularmente conhecido como gaiola de esquilo) escaparia de ter ser denominado como um motor CC.

Qualquer tipo de motor que seja acionado por meio de qualquer tipo de ponte inversora precisa tomar alimentação a partir de um barramento de CC, inclusive quando a ponte inversora aciona um motor de indução. Mas, nada impede que o tal barramento CC seja, em vez de proveniente de uma bateria, mas, sim, apenas um capacitor que empresta energia tomada a partir de uma fonte de CA, que podendo ser a rede elétrica de abastecimento em CA, e que esta provenha de algum transformador alimentador de saída da subestação de Ibiúna-SP, que, por sua vez recebe energia da dupla linha de transmissão de ±600 kV em CC. 

Seguindo o fluxo da energia elétrica a partir da sua fonte de geração (que também é, de fato, um processo de conversão de energia), podemos constatar que ela pode ser convertida e reconvertida, de CC para CA, de CA para CC, inúmeras vezes, até chegar ao um dispositivo consumidor final. Então, tal argumento também não justifica e, eu jamais li, vi, ou ouvi falar de taxionomia de máquinas elétricas qualquer, em parte alguma, tentando a ousadia de classificar um motor de indução como máquina CC.

Este tipo de motor (motor de indução) tem o seu emprego defendido em aplicações de VEs, principalmente, pela Tesla Motors nos possantes carros que ela fabrica. Falar disso seria um assunto longo que desviaria o nosso foco atual, mas, eu quero dizer, apenas, que a Tesla o faz, principalmente, porque os norte-americanos simplesmente têm verdadeira ojeriza quanto aquelas tais "lamentáveis complicações geopolíticas que envolvem a comercialização de ímãs permanentes de terras raras asiáticas".

Então, voltando ao curso da nossa teoria de controle do motor de imãs permanentes vale dizer que um Modelo de Planta preciso é sempre um bom eixo para o desenvolvimento de um sistema de controle, usando projeto baseado em modelos. Com um modelo de planta bem construído, os engenheiros podem verificar a funcionalidade do seu sistema de controle, realizar ensaios com modelo em malha fechada, ganhos sintonizar via simulação, otimizar o projeto e executar análises hipotéticas que seriam difíceis ou arriscadas fazer na planta real.

Nós não iremos projetar nada aqui, mas, iremos avaliar algumas das técnicas de comutação empregadas para fazer funcionar o motor de ímãs permanentes e, por isso, pelo menos uma boa olhada no modelo elétrico dele é conveniente ser feito e pode, não apenas ajudar a enxergar os fenômenos elétricos corretamente, bem como evitar nos fazer cair em certas armadilhas traiçoeiras que costumam levar a interpretações errôneas. 

No teste de degrau de tensão CC (análise de resposta a transitório) uma tensão de CC é aplicada, repentinamente, entre os terminais da fase A e da fase B do motor de ímãs permanentes  (enquanto a fase C é mantida aberta), e a corrente resultante é medida ao longo do tempo. Assim, podemos concluir que, eletricamente, sob essas condições, o motor de ímãs permanentes trifásico se comporta como um circuito com dois resistores em série e dois indutores série (um resistor e um indutor por fase).

Um fato básico a ser considerado é que, um indutor (L) é caracterizado por ser um elemento que apresenta a propriedade da indutância (L) e, a corrente elétrica fluindo através do fio condutor de um enrolamento (ou uma bobina) cria um fluxo magnético (φ) e, a indutância é determinada pela quantidade de fluxo magnético (φ) que é criado em torno dele, para uma dada intensidade de corrente elétrica que flui através dele. Matematicamente, a indutância (L) é, simplesmente:

O literal L é empregado para designar tanto o elemento (indutor) quanto a sua propriedade (indutância) e se origina, em homenagem, na primeira letra do sobrenome do físico Heinrich Lenz, um dos primeiros a observar tal fenômeno, e a formular a Lei de Lenz, que trata da polaridade (orientação) da tensão induzida, algo que veremos mais adiante.

Por outro lado, como um enrolamento (ou bobina) é construído por um fio condutor que é feito de um certo material, que tem uma seção transversal, em geral redonda, que apresenta uma determinada área por onde a corrente elétrica é forçada a passar, ao fluir por todo o comprimento do fio condutor empregado para constituir o enrolamento, tal enrolamento apresenta, também, a propriedade de resistência elétrica (R).

Então, é conveniente que um enrolamento (ou bobina) sempre seja visto como uma associação RL em série (resistência + indutor), mesmo que, na prática, em geral, quando se constitui enrolamentos, espera-se deles, prioritariamente (quando não exclusivamente), o efeito da propriedade da indutância (L), e não o da resistência (R). Um enrolamento com apenas indutância seria o chamado indutor puro, algo que pode ser idealizado, mas não construído.

No teste proposto, a aplicação do degrau de tensão CC deve ser feita por um tempo de duração limitado para, no caso do valor final estável atingido pela corrente circulante ser elevado o bastante, ela não provoque, por efeito Joule, o sobreaquecimento dos enrolamentos sob teste por um tempo demasiado longo (o que poderia ser minimizado com o acréscimo de um resistor externo limitando a corrente). 

Num modelo mais sério e completo, deveríamos incluir, também, por causa do efeito da FCEM inerente ao funcionamento dos indutores, também, duas fontes de CC. Estas fontes de CC (na figura abaixo, eA, eB e eC) poderiam ter um efeito complicado, sobre a corrente, se você não boquear algum eventual movimento do rotor ao fazer teste de degrau de tensão CC.


Como um enrolamento de motor (de qualquer motor) contém tanto a parcela resistiva (RRB) quanto a parcela indutiva (LA LB) mas você não consegue, na prática, separar essas duas parcelas, um resistor externo extra, de valor ôhmico adequadamente pequeno, tanto servirá para limitar a corrente a um valor moderado, quanto servirá para nos fornecer, por meio do comportamento da queda e tensão entre seus terminais, uma imagem do comportamento da corrente, pois num resistor (puro) a tensão é corrente têm sempre a mesma forma de onda.

O comando do início da aplicação do degrau de tensão é feito por se manobrar a chave de pulso, que previamente está ligando os enrolamentos do motor ao diodo roda livre que, neste caso, faz o papel semelhante ao que os diodos que existem numa ponte inversora fazem e, a princípio, o diodo, combinado à chave de pulso, está permitindo que haja um caminho fechado que garante que o indutor (L) se descarregue. Permanecendo por um curto tempo de estado estacionário nesta posição de repouso, garantidamente o indutor (L) estará plenamente descarregado (VRA, VLA, VRB e VLB = 0 V; i = 0 A).

Ao premir a chave de pulso, um novo estado estacionário inicia com a aplicação do degrau de tensão fornecido pela fonte CC. Apesar do surgimento abrupto da tensão sobre o enrolamento, a corrente não surgirá tão rapidamente. Antes, ela irá crescer gradualmente, a medida que o L (indutor) for admitindo receber e armazenar energia. A velocidade com que a energia entra no L é determinada pela constante de tempo L/R e a velocidade com que a corrente sobe sofre um decaimento exponencial do decorrer de do tempo total de 5•L/R segundos (tempo estipulado como ideal para a duração do processo de carga), até que, por fim, o se torne plenamente energizado (plenamente carregado de energia, armazenada em seu campo eletromagnético).

Isso equivale a dizer ao longo deste transitório que dura 5•R/L s, o L se comporta com um elemento que apresenta uma resistência elétrica variável, que inicia em valor praticamente infinito, e termina em valor praticamente zero, ou seja, o valor final máximo que a corrente atinge passa a depender, apenas, da limitação imposta pela resistência (R) total do circuito (ou seja, R = Rlimit + RA + RB). Após decorrido o tempo 5•R/L s, a corrente máxima permanece circulando normalmente, por tempo indefinido, não mais variando, e o L conserva a sua energia que foi previamente armazenada (enquanto a corrente crescia), energia que, agora, também, permanecerá invariável, pelo restante de tempo em que a chave de pulso ainda permanecer premida, mantendo a corrente circulante.

Embora praticamente não haja mais dissipação de potência no L, pois a sua queda de tensão é praticamente zero e, toda a tensão aplicada a partir da fonte CC se encontra sobre a resistência (R) é corrente máxima circulante permite ao L manter a sua intensidade fluxo de campo magnético em valor, também, máximo (num indutor a intensidade de campo sempre acompanha a intensidade da corrente circulante) e, enquanto isso a R não está, apenas, limitando a corrente circulante mantida em seu valor máximo, como, também, estará dissipando energia em forma de calor, por efeito joule e, por isso, o enrolamento do motor sofrerá um aquecimento.

Então, agora, é bom tratarmos logo de soltar a chave de pulso para fazer cessar a corrente circulante. Só que, todavia, a corrente não cessará! Sim, pois é ai que começa "a magia" do L: como ele possui energia armazenada na forma do seu campo magnético, ao "perceber" o corte no suprimento da corrente, ele, imediatamente, assume, em si mesmo, a função de uma fonte de tensão, ou seja, repentinamente, surge entre os terminais de L, uma tensão, que é a que chamamos, mais apropriadamente, de força contra-eletromotriz (FCEM).

A FCEM do L adota, instantaneamente, o mesmo valor da queda de tensão que se encontra sobre a R, no exato instante em que ocorrer o corte no suprimento da corrente, ou seja, a FCEM terá, inicialmente, o mesmo valor da tensão da Fonte CC (que agora está desligada), só que com uma polaridade invertida (ou seja, VL = -VR, dai o fato dela ser chamada contra-eletromotriz) . Como eu disse, isso tudo ocorre, repentinamente, no exato instante após ao soltar a chave de pulso.

A explicação é que, assim como o L não pode ganhar energia repentinamente (tendo sido necessário decorrer o tempo 5•R/L s para que ele se carregasse plenamente), também na hora de perder energia ele não pode perdê-la repentinamente e, a descarga da energia previamente armazenada se dará na forma do fornecimento de uma corrente elétrica que ele mesmo (o L) irá suprir ao circuito, ao longo do tempo em que ele se descarrega. Note que, sem a presença do diodo roda livre, não haveria o caminho fechado para a circulação da corrente de descarga do L, e ela tenderia a ocorrer por um centelhamento, que ocorreria, muito provavelmente, por dentro da chave de pulso.

Em outras palavras, nenhum campo eletromagnético pode ser criado, ou ser extinto, repentinamente. Um campo previamente desenvolvido irá colapsar respeitando a mesma constante de tempo da sua criação. Como a FCEM tem a mesma tensão da fonte, e o caminho para circulação da corrente de descarga do L passa pela mesma R de antes (exceto por algum acréscimo praticamente desprezível devido à resistência interna do diodo), o tempo necessário para a descarga de L será o mesmo tempo que se precisou, antes, para carregá-lo.

Assim, o corrente circulante (sustentada pelo próprio L) irá variar a partir daquele seu valor inicial máximo, e irá decair exponencialmente, no decorrer do tempo de 5•R/L s, até alcançar o valor de praticamente zero, que é quando o L já não terá mais nenhuma energia armazena. Na figura abaixo, R/L = t, a chave de pulso é premida em 0•t, e será solta pouco após decorrido 5•t (tempo mais que suficiente para o L se carregar plenamente). A partir dai, mais um tempo de 5•t a frente, e o L voltará a estar plenamente descarregado.


Note que, ao fazer o teste de degrau de tensão CC você usou um artifício que criou uma condição de operação que é diferente daquela que o motor normalmente opera, quando ele gira obedecendo a um padrão de sequencial de comutação, que envolve excitar as fases de modo combinado e, principalmente, pelo fato de que, se o rotor estiver livre para girar, ele de fato irá girar. Uma vez que você bloqueou o giro do rotor você tornou o circuito magnético uma constante e, com isso, você passou a ter, nos enrolamentos, indutores que são bastante simples.

Neste caso, há (apenas) quatro fatores básicos relacionados com a construção dos enrolamentos que determinam a quantidade de indutância existente neles:
  • O número (ou quantidade) de espiras do enrolamento: A força do campo magnético desenvolvido por uma bobina é dependente de ambos: da intensidade da corrente que passa através da bobina e do número de espiras da bobina. Assim, para uma determinada intensidade de corrente constante através da bobina, mais voltas do fio significa que a bobina irá gerar uma maior quantidade de força de campo magnético. Assim, um maior número de voltas de fio em uma bobina resulta em maior indutância, enquanto menos voltas de fio em da bobina resulta em menor indutância, com indutância variando como o quadrado do número de espiras (o dobro do número de espiras, corresponde a quadruplicar a indutância). Mas repare, também, que se um maior número de voltas de fio implicar no emprego de um comprimento total do fio maior, isso também irá afeta, consequentemente, a parcela resistiva do enrolamento para maior (e não apenas a indutância). O número de espiras das bobinas costuma ser visto como o parâmetro mais importante dos enrolamentos, mas isso costuma induzir ao erro de se desconsiderar a igual importância os demais parâmetros;
  • A área de contorno do enrolamento (ou área associada ao diâmetro da bobina): não importa se é bobina é enrolada em um formato circular, elíptico ou oval, há, sempre, uma área a ser considerada, como a que pode ser vista olhando longitudinalmente para a seção transversal do núcleo através da bobina. Uma área de bobina menor facilita a variação (o surgimento e / ou o colapso) do campo, ou seja, resulta numa menor indutância; enquanto que, uma área de bobina maior apresenta maior oposição à formação / colapso do fluxo do campo magnético, ou seja, resulta em maior indutância. Na verdade, a indutância de uma bobina aumenta, diretamente, a medida que a área da seção transversal do núcleo aumenta. Mais uma vez, vale lembrar que, fisicamente, é necessário mais comprimento de um determinado fio, para se construir uma bobina de diâmetro maior do que o que é necessário para construir uma de diâmetro menor, tendo em conta que ambas possuam um número igual de espiras. Portanto, não apenas mais linhas de força existirão para induzir a FCEM, mas, também, a parcela de resistência ôhmica será maior.
  • Comprimento da bobina: bobinas longitudinalmente bem compactadas significa uma menor dispersão das linhas de força do campo. A compactação longitudinal (menor comprimento) significa espiras muito próximas umas das outras, resultando em uma bobina relativamente curta. Este espaçamento próximo aumenta a concatenação do fluxo (acoplamento indutivo ótimo) e, consequentemente,  aumenta a indutância da bobina. Assim, dobrar o comprimento de uma bobina, mantendo o mesmo número de espiras, causa reduz a  metade o valor de indutância. Quanto maior o comprimento da bobina, resulta em menor indutância; quanto mais curto o comprimento da bobina, maior será a indutância, e;
  • O quarto fator físico que afeta a indutância de uma bobina é o Tipo de Material utilizado como o Núcleo da Bobina, de modo que a indutância de uma bobina aumenta, diretamente, a medida que a permeabilidade magnética do material do núcleo aumenta.
No entanto, vale ressaltar que uma outra importância do teste de degrau de tensão CC (análise de resposta a transitório) é que ele permite deixar claro que a produção de FCEM é algo inerente a operação comutada de qualquer tipo de indutor, e não algo para se referir, apenas, à tensão que ocorre, especificamente, nos motores elétricos, onde existe um movimento relativo, entre os enrolamentos do estator e o campo magnético dos ímãs do rotor.

Todavia, na operação normal da máquina, o rotor inexoravelmente gira, e os campos magnéticos dos ímãs do rotor, em movimento, interagem com os campos dos indutores dos enrolamentos do estator. Isso acarreta consequências que influem, modificando a forma como os indutores dos enrolamentos se carregam e se descarregam enquanto o rotor gira e, consequentemente, modifica, também, a FCEM produzida. 

Assim, é preciso se ter sempre em mente, primeiramente, que ao comutar enrolamentos de motores com pulsos de tensão que são retangulares (portanto, têm bordas de subida e de descida abruptas), a corrente, por sua vez, não acompanha este mesmo padrão de forma, porquanto ela não pode variar em degraus bruscos, quando ela flui por elementos dotados de indutância. Todavia, com o rotor girando, outras considerações mais precisam ser feitas. Quais são essas novas considerações a serem feitas?

Quando uma máquina ímãs permanente gira, cada enrolamento, a seu tempo, gera a sua respectiva FCEM, que como vimos, tem polaridade oposta à da tensão da fonte com a qual o indutor foi energizado. Só que neste caso, a forma como o indutor se carrega e descarrega é mais complicada, pois, a parcela indutiva de cada enrolamento não é mais uma contante depois de estar construtivamente pronta.

Além de depender dos parâmetros construtivos do próprio enrolamento e do núcleo do estator, a indutância dos enrolamentos do estator irá variar sob a dependência de como ele enxerga a influência que ela sofre dos campos magnéticos gerados pelos ímãs do rotor (que agora está girando) e. estes, por sua vez, dependem dos parâmetros construtivos do rotor, os quais determinam a densidade de fluxo magnético que ele desenvolve.

Uma vez que o motor já foi concebido, a indutância estática dos enrolamentos do estator está definida, e a densidade do campo magnético do rotor também está definida, e ambos permanecem constantes, porém, ainda assim, resta algo que irá causar perturbação no comportamento da FCEM, quando o motor estiver girando: a variação da velocidade angular do rotor.

Assim, a interação que resulta na forma da FCEM é bastante complexa mas, via de regra, as tensões chaveadas a partir de PWM sobre os enrolamentos de um motor de ímãs permanentes tenderão a provocar uma corrente alisada e, disso é a resulta a possibilidade de a tornarmos tanto para a formato trapezoide, quanto para o formato próximo a sinusoide. Para ambos os casos, o único fator que regula FCEM é a velocidade angular ou velocidade do rotor e, conforme a velocidade aumenta, também aumenta a FCEM.

De fato, entendendo como funciona o comportamento da corrente, entendemos, conseguintemente, o comportamento da densidade do fluxo magnético e, concomitantemente, o do torque. Estudar o torque e a FCEM de um par de enrolamento é útil para ajudar na análise de motores polifásicos, porque isso pode demonstrar que o torque e o FCEM produzida por um enrolamento em qualquer máquina de imã permanente (síncrona, sem escovas) é, também, uma função da posição do rotor, pois o campo magnético do rotor interage com o campo eletromagnético do indutor (L).

Por exemplo, ao considerarmos dois motores elementares, como mostrado na figura, os enrolamentos de ambos os motores são idênticos e consistem de N espiras que estão contidos nas ranhuras mostradas. Obviamente que, cada rotor ira produzir densidades de fluxo no entreferro de comportamentos diferentes, especifico de acordo com cada construção, e essa diferença estrutural na máquina faz com que tenhamos um motor com distribuição de fluxo sinusoidal e outro motor com distribuição de fluxo trapezoidal


O motor da esquerda tem ímãs em seu rotor que produzem uma densidade de fluxo no entreferro que é uma função sinusoidal do ângulo (α) em torno do rotor. Já, o motor da direita tem ímãs que produzem uma densidade de fluxo no entreferro, que é também uma função do ângulo em torno do rotor, mas cuja forma é difícil descrever. No entanto, ele tem a característica notável de que a sua magnitude é máxima e constante ao longo de um passo angular de β ≥120 °;

Note-se que β tem correspondência entre as figuras mostradas acima e abaixo. Se estes segmentos de pico são centradas sobre α = 0° e α = 180°, a densidade de fluxo no entreferro pode ser aproximada pela trapezoidal mostrada em linhas tracejadas.


O motor do lado esquerdo costuma ser denominado motor sinusoidal, e o motor à direita arbitrado como sendo um motor trapezoidal. De fato, essa diferença estrutural pode ser determinante para a escolha do algorítimo de controle e da técnica de PWM, combinada ao tipo de sensoriamento adequado controlar o circuito de comutação eletrônica, para cada tipo. Todavia, estes são modelos elementares representativos teóricos para o que poderia ser os dois tipos de motores de ímãs permanentes, mas os motores reais não são construídos conforme mostrado.

O motor da esquerda, na verdade, não apresenta uma boa maneira para se tornar a densidade de fluxo da máquina vista pelo estador com um aspecto sinusoidal, para atingir o desejado resultado de reduzir a ondulação do torque, pelo simples fato de que o fator de forma dos magnetos do seu rotor a tornariam mais cara, ao passo que, a ovalação do estator causado por eles, não apenas torna o entreferro irregular, mas, causa um aumento considerável na média dele, reduzindo a eficiência da máquina.

Por fim, restou, ainda, mais uma questão (que eu creio ser a última e, também, bastante delicada, não só por ser importante, mas, também, porque o assunto remete a um tópico avançado sobre enrolamentos de motores): o Número de Ranhuras por Polo por Fase do estator motor de ímãs permanentes.

O esquema de contagem e categorização de máquinas elétricas pelo seu número de ranhuras por polo por fase é algo que vêm de muito longa data, e foi herdado, principalmente, a partir da necessidade de categorização dos motores de indução para atendimento a uma ampla gama de aplicações.

O número de ranhuras por polo por fase (q) do enrolamento do estator determina como o leiaute dos enrolamentos é organizado nele e, também mostra informações sobre o fator de enrolamento e seus harmônicos associados. Existem três possibilidades de resultados para as combinações ranhuras por polo por fase:
  • Se o número de ranhuras / polo / fase é um número inteiro, o enrolamento é chamado de Enrolamento Distribuídos de Ranhura Inteira;
  • Se o número de ranhuras / polo / fase é fracionário e superior a 1, o enrolamento é chamado de Enrolamento Distribuído de Ranhura Fracionada, e;
  • Se o número de ranhuras / polo / fase é fracionário e inferior a 1, o enrolamento é chamado de Enrolamento Concentrado.
Enrolamentos com o mesmo número de ranhuras / polo / fase q têm o mesmo fator de enrolamento. Os esquemas de enrolamento consistem numa mesma sequência básica, que é repetida pelo número de simetrias do enrolamento (ou periodicidade da máquina).

Por exemplo, para dois casos de enrolamentos de motores de camada única:
  • Enrolamento de 10 polos; 12 ranhuras; 3 fases: q = 12 / (10⋅3) = 2/5; fator de enrolamento fundamental: 0,966; enrolamento de simetria simples;
  • Enrolamento de 20 polos; 24 ranhuras; 3 fases: q = 24 / (20⋅3) = 2/5; fator de enrolamento fundamental: 0,966; enrolamento de simetria dupla.
O número de ranhuras / polo / fase é também um indicador sobre o fator de enrolamento, e de quais harmônicos que você pode esperar do fator de enrolamento.

Por exemplo prático, podemos olhar para o espectro harmônico associado ao fator de enrolamento de enrolamentos constituídos de 4 polos; 3 fases; ranhuras inteira mostra (na figura a seguir) que um aumento do número de ranhuras / polo / fase (a partir de q = 1, para um enrolamento de Qs = 12 ranhuras, até q = 5, para um enrolamento de Qs = 60 ranhuras) conduz a uma diminuição contínua do fator de enrolamento fundamental.


No entanto, uma vez que as bobinas são distribuídos ao longo de várias ranhuras por polo por fase, a FCEM se torna mais sinusoidal. Este fato se reflete em uma redução significativa dos harmônicos de ordem três e superior associados ao fator de enrolamento.

Num outro exemplo, podemos constatar que, para enrolamentos concentrados (q < 1), o fator de enrolamento fundamental também varia em função do número de ranhuras / polo / fase (como mostrado na figura a seguir). Os maiores fatores de enrolamentos fundamentais são encontrados quando o número de ranhuras é mais próximo do número de polos, ou seja, quando q ≈ 1 / 3.


O fator de enrolamento para um enrolamento específico expressa a relação entre o fluxo concatenado produzido pelo enrolamento em relação ao que pode ser comparado como o fluxo que seria concatenado por um enrolamento padrão de referência (ou seja, com uma só camada, de passo completo, não inclinado (não enviesado), ranhura inteira, com o mesmo número de voltas (em relação ao enrolamento comparado) e uma única ranhura por polo por fase). O torque de um motor elétrico é proporcional ao seu fator de enrolamento fundamental.

O fator de enrolamento (kw) geralmente pode ser expresso como o produto de três outros fatores, o fator espaçamento (kp, também denominado período da bobina, ou fator de acorde, ou, ainda fator de encurtamento), o fator de distribuição (kd, também chamado coeficiente de respiração), e o fator de inclinação (ks, ou fator de enviés):

                                kw = kp⋅kd⋅ks

O fator espaçamento (kp) reflete o fato que os enrolamentos são, muitas vezes, não totalmente espaçados, ou seja, as espiras individuais são reduzidas, a fim de diminuir o comprimento do fim das espiras e, assim, não cobrem um passo de polo completo (também chamado passo calibrado, ou passo afinado, ou passo de acorde).

Exemplos: 
  • Enrolamento de 2 polos; 6 ranhuras; com período de bobina de 3 passos de ranhura (ou seja, passo completo): kp = 1,0
  • Enrolamento 2 de polos; 6 ranhuras; com período de bobina de 2 passos de ranhura: kp = 0,866
  • Enrolamento de 2 polos; 6 ranhuras; com período de bobina de 1 passo de ranhura: kp = 0,5
O fator de distribuição (kd) reflete o fato que as bobinas do enrolamento de cada uma das fases são distribuídas numa série de ranhuras. Uma vez que a FEM induzida em diferentes ranhuras não estão em fase, sua soma fasorial é menor do que a soma numérica.

Exemplos:
  • Enrolamento de 2 polos; 6 ranhuras; com 1 ranhura por polo por fase: kd = 1,0
  • Enrolamento de 2 polos; 12 ranhuras; com 2 ranhuras por polo por fase: kd = 0,966
  • Enrolamento de 2 polos de 18 ranhuras; com 3 ranhuras por polo por fase: kd = 0,96
  • Enrolamento de 2 polos; 24 ranhuras; com 4 ranhuras por polo por fase: kd = 0,958
  • Enrolamento de 2 polos; com um número infinito de ranhuras por polo por fase: kd = 0,955
O fator enviés (ks) reflete o fato que o enrolamento é angularmente torcido, o que resulta numa difusão angular do fluxo e redução da FEM. Especialmente os motores de indução de gaiola têm suas barras do rotor enviesadas por um ranhura passo, a fim de reduzir os harmônicos do fator de enrolamento introduzidos pelo entalho do estator.

De acordo com a nossa definição de fator de enrolamento (kw), o fator de enrolamento desses enrolamentos de camada única, de passo completo, não-enviesados, ranhuras inteira, com uma única ranhura por polo por fase deve ser 1,0.

Exemplos de layout do enrolamento que têm um fator de enrolamento de kw = 1,0:
  • Enrolamento de camada única; 2 polos; 6 ranhuras; ranhura inteira.
  • Enrolamento de camada única; 4 polos; 12 ranhuras; ranhura inteira.
  • Enrolamento de camada única; 6 polos; 18 ranhuras; ranhura inteira.
  • Enrolamento de camada única; 8 polos; 24 ranhuras; ranhura inteira.
Então, a consideração de projeto da máquina ímãs permanentes é, ao mesmo tempo, tanto para produzir FCEM senoidal, quanto para produzir FCEM trapezoidal. No entanto, ao contrário de uma máquina de ímãs permanentes que têm um do fator de forma mais simples, com um número menor de ranhuras e um enrolamento de concentrado no estator, que é idealmente suficiente para produzir a FCEM trapezoidal (máquina denominada comercialmente motor BLDC), se for o caso de se desejar que a máquina de ímãs permanentes opere produzindo, especificamente, FCEM sinusoidal, se torna necessário que os enrolamentos do estator sejam distribuídos em tantas ranhuras por polo quanto for considerado como prático, a fim de se aproximar de uma distribuição sinusoidal (máquina denominada comercialmente motor PMSM (motor síncrono de imãs permanentes)).

Para reduzir a ondulação de torque, técnicas padrão, tais como a inclinação e espaçamento encurtado dos enrolamentos distribuídos são aplicados à máquina de ímãs permanentes. Assim, quando os enrolamentos do estator forem excitados por uma comutação sinusoidal, o rotor da máquina com os enrolamentos do estator adequadamente distribuídos se torna mais flexível do que numa outra máquina que apresente os enrolamentos concentrados.

Além do mais, para máquinas de ímãs permanentes de enrolamentos distribuídos é mais adequado montar os magnetos do rotor de modo não saliente (inseridos ou enterrados), em vez de fazer a montagem em superfície comum. Todavia, rotores de polos salientes são, também, muitas vezes utilizados para máquinas de enrolamentos de estator distribuído, porque eles oferecem características de desempenho atraentes durante a operação em região de enfraquecimento fluxo.

Já, para máquinas de enrolamentos de estator concentrados, a montagem em superfície dos magnetos no rotor é a escolha favorita, até mesmo por uma questão de menor custo do processo de fabricação da máquina.

Você pode "brincar" de projetar o seu próprio Motor Elétrico - Uma Máquina de Ímãs Permanentes Montados em Superfície em Rotores Internos / Externos) com o EMETOR: Um Software Online para Projeto de Motores Elétricos de Ímãs Permanentes.

Notas:


  1. FCEM é um acrônimo relativo ao termo "Força Contra Eletromotriz" que é um fenômeno relativo a Física da eletricidade (ou dos fenômenos eletromagnéticos) que significa uma força eletromagnética (uma tensão elétrica) que surge sobre um elemento de circuito elétrico denominado indutor (ou elemento indutivo, cuja principal característica é opor-se a qualquer variação brusca na corrente elétrica que flui por ele), em apenas parte do seu processo operativo. Como todo elemento armazenador de energia, o processo operativo do indutor (que acumula e armazena energia em seu campo eletromagnético) envolve, sempre, duas etapas:
  • A de receber energia (etapa de carga ou de carregamento), e;
  • A de ceder energia (etapa de descarga).
FCEM ocorre, somente, durante a etapa de descarga, e se manifesta na forma de uma tensão que surge repentinamente sobre o indutor, e que é sustentada pelo próprio indutor, pelo fato dele ter armazenado energia durante a etapa de carregamento, permitindo que ele opere como fonte de tensão na etapa de descarga. A tensão (FCEM) tem a mesma intensidade, porém polaridade contrária, com relação á tensão da fonte que, antes, alimentava o indutor durante a etapa de carga, Por ter polaridade contrária, dai vem o termo Força Contra Eletromotriz. Havendo um caminho para circulação de corrente, na etapa de descarga a corrente pelo indutor fui no mesmo sentido em que fluía enquanto a fonte o alimentava (na etapa de carga), e com a mesma intensidade máxima em que ela se encontrava antes. A diferença é que, agora, é o próprio indutor que está operando como fonte de alimentação, fornecendo corrente, o que o faz ele ir se descarregando aos poucos. Assim a corrente irá decrescendo (aos poucos, pois o indutor se opõem a qualquer variação brisca da corrente), até que, com o indutor já plenamente descarregado, a corrente, em fim, cessa, desaparecendo, também, a FCEM.

Se você achar que precisa conhecer melhor o processo envolvendo a carga e a descarga do indutor e sobre a sua ,FCEM consulte sobre isso nas NOTAS da postagem do artigo Máquinas Elétricas de Imãs Permanentes (Parte 1/2).

2. Exceto para certos casos de motores de relutância, que, por não terem o mesmo número de polos entre estator e rotor, de fato, deixam de ser síncronos.

3. A figura não mostra, mas, de modo geral as máquinas de imas permanentes, notadamente os motores BLDC, também não dispensam o emprego de papel isolante em suas montagens e, obviamente, este material deve acompanhar a mesma classificação da fiação do enrolamento bobinado, ou seja, em geral é sempre Classe F (155°C) ou superior, de modo que se pode empregar, por exemplo, os seguintes materiais:


Papel Isolante DMD Thernomid - Classe F 155°C - Hostamex Multirherm - Espessura de 0,13 a 0,45 mm.












Papel Isolante NOMEX NMN - Classe F / Classe H - 180°C - Dupont - Espessura de 0,20 a 0,37 mm

Licença Creative Commons
Este trabalho de André Luis Lenz, foi licenciado com uma Licença Creative Commons - Atribuição - NãoComercial - CompartilhaIgual 3.0 Não Adaptada.