Mostrando postagens com marcador vida útil. Mostrar todas as postagens
Mostrando postagens com marcador vida útil. Mostrar todas as postagens

sábado, 16 de março de 2013

Avaliação do Ciclo de Vida Ambiental Comparativa Entre VEs e VCIs (Parte 1/2)


Os Veículos Elétricos (VEs), em combinação com as Fontes de Energia de Baixas Emissões de Carbono oferecem o Potencial Vital para reduzir as emissões de gases de efeito estufa e a exposição a emissões de gases de escape de transporte pessoal globais. Nisso, todas as opiniões parecem convergir.

Sobre os VEs, especificamente, estou certo de que ainda não consideramos, de um modo exaustivo, tudo aquilo que realmente importa e que precisa ser considerado, a fim de que se possa poiar a tomada de um posicionamento firme, que leve a partida para ações efetivas, plenamente decididas, para o planejamento e desenvolvimento sobre tal assunto. Por isso tentaremos acrescentar, aqui e agora, alguma nova visão sobre tais considerações.

No entanto, de tudo o que já tratamos neste blog sobre Fontes de Energia de Baixas Emissões, se o povo brasileiro, autoridades do Brasil e mesmo a engenharia nacional, ainda tem alguma dúvida séria de que, aqui no Brasil, nós já temos, principalmente se olharmos para o lado da produção, uma matriz energética das mais invejáveis dentre as nações da terra, a oferecer condições positivamente ímpares comparativamente ao resto do mundo, para a implantação dos VEs, a discussão que virá a seguir será improdutiva, desinteressante mesmo.

Portanto, vá para outras postagens e tire, antes, todas as suas dúvidas sobre como realmente é a Matriz Energética do nosso país, e quais são as tendências que ela deverá seguir ao longo desse século XXI, antes de prosseguir por aqui.

Um Clamor no Deserto:


Ao considerar, mais uma vez, os benefícios da (maciça) implantação dos VEs, tanto a nível global como, ainda mais, especificamente no Brasil, lembramo-nos de que é importante buscar responder às todas as preocupações quanto a "Problemática da Mudança". Por causa disso é que vamos tentar lançar um foco de luz crítica novo, em relação àqueles que já foram, anteriormente, usados em outras abordagens aqui neste blog.

De modo algum, uma discussão mais exaustiva das controvérsias relacionadas aos VEs deve ser considerada como um enfado por aqueles que, em si, já carregam um considerável cabedal de valores, princípios e certezas, não apenas com relação a irreversibilidade da direção dos múltiplos caminhos paralelos das cadeia de produção e de utilização, que devem e serão seguidos a nível global sobre os VEs mas, também, quanto à urgência necessária às tomadas de decisões e de ações, proporcionadas pela noção de oportunidade que ora se presenta, em especial para o Brasil, em participar e envolver-se de modo geral, nessas cadeias.

Antes, isso deve ser tido como uma necessidade e, mesmo como um grato prazer por, no mínimo, sentir nos, também, mais do que, simplesmente, participantes e, sim, deveras envolvidos nessa fase da história da vida humana e do desenvolvimento das ciências naturais e suas tecnologias aplicadas.

Politicamente falando, acredito que, mais do que nunca, o brasileiro precisa apegar-se à necessidade de incrementar o seu senso crítico perspicaz próprio e cuidar para que não seja, mais uma vez, desviado das boas oportunidades que as crises, inerentemente, costumam oferecer, e que nós costumamos perder, por falta de aproveitamento oportuno. Imitando a fala do personagem "Sr. Omar" do seriado "Todos Odeiam o Chris": ... trágico, ... trágico!

Que não se espere que possamos ser compelidos, ou mesmo, motivados por forças competitivas do jogo do poder em qualquer nível, externas a nós mesmos, para tomarmos decisões e partirmos para ações concretas, no que concerne a sermos favoráveis a nós mesmos, pois, como sempre foi e será, tais forças estão comprometidas apenas com o seu próprio proveito e lucro e, quem não usa bem as oportunidades que se lhes apresenta, no tempo adequado para elas, fatalmente será usado por outros diante delas.

Muitas das criticas negativas aos VEs e suas cadeias de produção e de utilização, que tenho visto expostas, direcionadas ao Brasil e focadas sobre o Brasil, até o presente momento, por mais que se façam travestidas de sérias, responsáveis e bem intencionadas, até mesmo por que elas costumam apresentam-se calcadas em Critérios Corretos, chegam a resultados e conclusões totalmente inconsistentes e errôneos, o que as tornam sugestivas pedras e tropeço.

Tal sucede porque, em muitos casos (eu creio), talvez elas mascararem interesses não revelados, relacionados a eventuais riscos de que, uma posição inteligente e concreta assumida e desenvolvida  por nós brasileiros, possa vir a trazer, efetivamente, novos elementos de diferencial competitivo dentro do mercado, coisa indesejável da parte de tais interesses.

Assim, mesmo preferindo buscar as informações mundo afora, até pela carência de encontrá-las por aqui, eu prefiro cavocar arduamente atrás delas, do que esperar que elas, simplesmente, venham prontas até mim, de modo que, tratando-se do contexto dos VEs, mesmo não descartando avaliar coisa alguma, eu desconfio, sistematicamente, como suspeitas, de tudo que me chega pronto, principalmente quando se trata notificações originadas de Empresas de Consultorias Internacionais, quanto entregues gratuitamente, por mais respeitáveis que se apresentem.

De modo algum isso será confundido com xenofobia e preconceitos, haja vista que é apenas um ajuste de sintonia com a realidade do mundo comercial, atitudes esperadas de um povo, e não apenas de seu governo, que almeja o respeito e o reconhecimento internacional.

Muitos estudos, incluindo o enfoque das apresentações sobre VEs que já tratamos neste blog até aqui, de uma maneira geral, têm-se centrado na "Fase da Utilização" dos VEs, fazendo comparações entre eles e outras opções de transporte.

Estou entendendo agora, que contra essa questão, os argumentações adversas que se apresentam, tanto aqui quanto, ainda, mundo afora, tendem a se esgotar mais rapidamente. Todavia, quanto a "Fase da Produção" de veículos automotores, está também é significativa quando se comparam VEs e VCIs (Veículos a Combustão Interna). É sobre isso, então, que buscamos explorar e ir ao embate, agora nesta postagem.

Óbvio que eu não teria muito a dizer, se procurasse me basear tão somente em resultados de experimentações feitas em solo da Terra Brasilis sobre tal assunto pois, é fato que, comparativamente a outros países, sejam os mais arrojados e expertos, ou mesmo os ditos "emergentes", como nós, muito pouco se em feito de prático (e mesmo teórico) por aqui.

Além disso, de modo mesmo assustador, desgraçadamente, até quanto a isso e em permeio ao pouco que se faz, temos visto ocorrem alguns perturbadores e absurdos casos de fraudes econômica, onde grupos de aproveitadores dementes vem buscando tirar aproveito desse momento para a rapinagem, causando, ilicitamente, algum ganho próprio e, maculando, de forma cruel, um assunto tão importante, delicado e crucial para todos nós.

Não, eu não vou tratar aqui, acerca de tais casos, apenas faço menção deles porque, infelizmente, como pesquisador, bem sei da sua recente existência e, não é por temor algum que deixo de fazê-lo mas, por saber que, par mim, seria um grande desprazer tal lida e, também, por acreditar que é totalmente improdutivo para a minha participação na causa em questão, tratar deles.

Talvez nem devesse mencionar, se não fosse pelo bem de ressaltar apenas o seguinte: fiquemos, também, todos nós, espertos como as raposas, quanto a tais coisas e, oremos para que os nossos poderes constituídos possam fazer a sua parte, por manter a nossa estrada rumo aos VEs (desde já mais do que vencedora), limpa dessa imundice!

Também, dentre aqueles que tem a intenção de defender a causa dos VEs, a nível global, existe falta de noção e de correção quando, sem maiores precauções, saem apregoando notícias fantásticas do tipo "Novas baterias de íons de lítio duram 10 vezes mais e carregam 10 vezes mais rápido", as quais não têm o menor fundamento técnico e tecnológico e acabam por fazer o efeito reverso, trazendo descredito à causa.

A tecnologia do transporte de íons de lítio começou de modo empírico e, em finais dos anos 60 e início dos anos 70, existiram inúmeras investigações exploratória dessa descoberta visando aplicação sobre baterias de lítio, através do qual o Prof Jűrgen O. Besenhard, na U.T. de Munique, se tornou o pioneiro em trazer uma interpretação e compreensão dos fenômenos complexos envolvidos.

Desde que a intercalação de lítio reversível em grafite e a intercalação de lítio em óxidos catódicos foi descoberto na década de 1970 por Besenhard, propondo aplicações de células com alta densidade de energia, como a decomposição do eletrólito e a co-intercalação do solvente no grafite eram, ambos, inconvenientes graves para um Ciclo de Vida longo para a bateria, somente em 1991, depois de dúzias de outras pesquisas mundo afora, foi que a Sony e a Asahi Kasei conseguiram lançar a primeira bateria de lítio-íon de aceitação comercial.

De lá para cá, mesmo passados mais de 20 anos, as novas baterias de íons de lítio ainda não duram 10 vezes mais e nem se carregam 10 vezes mais rápido. Todavia a tecnologia está longe da estabilidade por esgotamento, e a evolução paulatina ainda continuará ocorrendo por um longo tempo, cada vez mais sob a direção de princípios de sustentabilidade e de menor malefício ao meio ambiente.

No entanto é preciso entender o seguinte: se continuamos desfrutando e desejando desfrutar das tecnologias, devemos estar conscientes de que todas elas, por serem coisas extra-naturais, não poderão, de modo algum, serem medidas como benéficas ao meio ambiente e que, comparativamente, somente podemos apontar, alternativamente, tecnologias menos maléficas,  umas em relação a outras, para não incorrermos em falsidade e hipocrisia, típicas de ocorrerem quando se oculta interesses meramente comerciais.

Reciclar é sempre necessário mas, também pode, ainda, não ser o suficiente. Se for para nós vivermos na Terra, seja por mais 1000, por mais 100 ou mesmo por apenas mais 10 anos, de modo algum podemos continuar a fazê-lo, da forma como persistimos em fazer até aqui! Por isso, eu sugiro uma aulinha básica sobre "A História das Coisas", antes e prosseguirmos.

Avaliando uma Nova Visão: O Ciclo de Vida Ambiental Comparativo entre Tecnologias (Focado na Fase de Produção de Veículos de Mobilidade Pessoal):


Uma recente publicação relacionada a um estudo realizado no âmbito do Programa de Ecologia Industrial do Departamento de Engenharia de Energia e de Processos da Universidade Norueguesa de Ciências e Tecnologia (NTNU), cujo linque se encontra no final desta postagem e cujo título principal (traduzido) é o mesmo que eu emprestei para esta postagem, desenvolveu e forneceu um inventário transparente do Ciclo de Vida dos VEs e dos VCIs e aplicaram o tal inventário para avaliar VEs e VCIs, sob uma série de categorias de impacto.

Neste estudo, eles concluíram uma coisa bastante obvia: que os VEs alimentados pela oferta mista atual de eletricidade na Europa oferece uma redução de 10% para 24% no Potencial de Aquecimento Global (GWP(1)) em relação ao veículos convencionais a diesel ou a gasolina, assumindo uma Vida Útil de 150.000 km, igualmente para ambos os tipos de carros. 

Sobre os números envolvidos nessa conclusão, o artigo afirma que, os resultados são sensíveis a pressupostos relativos à fonte de energia elétrica, à fase de utilização do consumo de energia, ao tempo de vida do veículo, e às programações de substituição da bateria.

Então eu convido o leitor que se sentir desinformado, a ver nas notas, ao final desta postagem, a respeito da medida relativa do GWP e, mantenha clara e firmemente em sua mente que, estaremos falando (e ouvindo falar) em termos custos ambientais ou sacrifícios ecológicos e, não, em termos de custos monetários ou sacrifícios financeiros.

No entanto, e, é ai que eu quero focar, eles concluíram que:

Os VEs apresentam um potencial para aumentos significativos de toxicidade humana, a ecotoxicidade da água doce, eutrofização da água doce, e os impactos de esgotamento de metal, em grande parte proveniente da cadeia de fornecimento de veículos.

Para justificar a afirmativa acima, eles dizem o seguinte:

Os Impactos de Produção são mais significativas para os VEs do que os para os VCIs, assumindo uma vida do veículo de 200,000 km, exageramos os benefícios de GWP dos VEs para 27% a 29% em relação a veículos a gasolina ou para 17% a 20% em relação a veículos a diesel.

Já, uma suposição de 100.000 km de vida diminui o benefício de GWP dos VEs de 9% para apenas 14% no que diz respeito aos veículos a gasolina e implica em uma diferença insignificante com relação ao de um veículo diesel.

Melhorar o perfil ambiental de VEs requer o engajamento em torno da redução dos impactos da cadeia de abastecimento da produção de veículos e promover fontes limpas de eletricidade na tomada de decisões sobre infra-estrutura de eletricidade.

Vamos, agora, parar para racionalizar um pouco sobre aquilo que nos dizem os noruegueses Troy R. Hawkins, Bhawna Singh, Guillaume Majeau-Bettez e Anders Hammer Strømman, a fim de buscarmos captar com exatidão, o significado daquilo que eles nos pretendem fazer entender:

Quando eles dizem: "promover fontes limpas de eletricidade na tomada de decisões sobre infra-estrutura de eletricidade", isso é algo que se liga a qualquer uma das duas Fases, tanto a Fase de Utilização dos VEs, quanto a Fase da Produção deles.

É evidente que aquilo que afeta a Infra-estrutura de eletricidade, interferirá, tanto com a energia que move os meios de produção, incluindo ai, ambas as inteiras cadeias da produção, tanto a cadeia da produção da indústria automobilística (VCIs), quanto a cadeia da indústria eletro-automobilística (VEs), bem como, ainda, interferirá com a energia que abastecerá os VEs durante toda a sua vida útil efetiva.

Quando um produto é alvo de julgamento (VEs), sendo um julgamento por comparação, aquele produto que é utilizado como referência (VCIs), automaticamente, também estará em julgamento. Não se pode tomar um parâmetro e, fazendo-o variar de valor, olhar apenas para como isso afeta o produto alvo: a mesma consideração deve ser levada em conta para o produto referência.

Esse é o Bom Princípio da Equidade, que consiste na adaptação da regra existente à situação concreta, observando-se os critérios de justiça e igualdade. Pode-se dizer, então, que a equidade adapta a regra a um caso específico, a fim de deixá-la mais justa. Ela é uma forma de se aplicar o Direito, mas sendo o mais próximo possível do justo para as duas partes.

Asim, em termos de GWP associados Fase da Produção, ou seja, às cadeias de produção, por apenas promover fontes limpas de eletricidade, isso trará melhoria para o GWP dos meios produtivos em geral e, a princípio, igualmente, para ambas cadeias de produção, tanto a dos VEs, quanto a dos VCIs, pois, ambas. dependem igualmente do uso de eletricidade nos seus processos produtivos.

A menos que se especifique detalhes de ambos os processos produtivos, que apontem para diferenças alguma diferença considerável na quantidade de energia elétrica utilizada em cada uma das cadeias de produção, que justifique pensar o contrário do pensamento racionalizado acima, ele deve prevalecer.

Já, para a Fase de Utilização dos VEs, ai sim, promover fontes limpas de eletricidade na tomada de decisões sobre infra-estrutura de eletricidade, se torna, de modo evidente, um fator exclusivamente preponderante, a favor dos VEs na melhoria do GWP, pois eles consumirão energia elétrica por toda a sua vida útil, seja essa vida de 100.000 km, ou de 150.000 km ou ainda de 200.000 km.

Todavia, promover fontes limpas de eletricidade na tomada de decisões sobre infra-estrutura de eletricidade, é algo pouco relevante para fase de utilização dos VCIs.

É obvio que a eletricidade também está envolvida na produção dos combustíveis automotivos mas, a melhoria de GWP seria pequena pois, o peso da energia elétrica consumida para se produzir tais combustíveis é pequeno se confrontado com aquele que ocorre quando a energia elétrica é diretamente consumida na tração da mobilidade, em vez dos combustíveis.

Assim, se a avaliação dos noruegueses sobre melhoria de GWP, já é em algo favorável (ou no pior caso, conduz a um empate técnico, como é o caso do embate com o diesel) aos VEs, mesmo atualmente, antes de conseguirmos promover fontes limpas de eletricidade na tomada de decisões sobre infra-estrutura de eletricidade e mesmo considerando o pior caso de vida útil, que seria de apenas 100.000 km para os VEs.

Lembrem-se que a tecnologia dos VCIs já está em desenvolvimento a 137 anos, quando os motores a vapor, que queimavam o combustível fora dos cilindros, deram lugar aos motores de combustão interna, que  queimavam combustível no interior do cilindro, a princípio uma mistura de ar e gás de iluminação. O ciclo de 4 tempos foi utilizado com êxito pela primeira vez em 1876, num motor a combustão interna construído pelo engenheiro alemão conde Nikolaus Otto.

Quanto aos VEs, apesar deles já estarem entre os primeiros automóveis e, mesmo antes da preeminência dos motores de combustão interna, automóveis elétricos rodavam nos  EUA, no início de 1900, produzidos pelas companhias Baker Electric, Columbia Electric, Detroit Electric, correspondendo a cerca de 28% dos carros em circulação. VEs eram tão populares que, até mesmo o ex-presidente Woodrow Wilson, e seus agentes do serviço secreto, rodavam por Washington DC em seus Milburn Electrics, que, segundo contam, cobriam cerca de 60 milhas por carga.

Todavia, a verdade, é que as tecnologias envolvidas nos VEs, principalmente a da bateria, não estava pronta por aquela época. Não havia principalmente, uma durabilidade satisfatória dela, e depois, ainda a potência específica e a energia específica viriam a ser, relativamente, ainda mais insatisfatórias, comparativas as VCIs, que logo se tornaram muito potentes e de longa autonomia e, com isso, os VEs se recolheram ás trevas da civilização.

Todo o século XX teria passado em branco para os VEs, caso não fosse uma experiência industrial e comercial, traumática e surreal que entrou para a história, começando na Califórnia, em 1996 e terminando em amontoados de ferro velho em 2003. Salvo bolhas intermitentes, os VEs só vieram renascer mesmo, como produção em série firme, no final de 2010, com o Nissan LEAF.

Assim, podemos verificar que VEs e VCIs, estão em concorrência direta a mais de um século e, fatalmente, quando ocorre de um deles se tornar preeminente, o outro tende a entrar em profunda depressão e sumir da praça (esse é o anuncio de tragedia mais temido para os VCIs). VEs e VCIs são de tal forma antagônicos que, mesmo o bom princípio da equidade anteriormente explicado, pode vir a se tornar uma questão dúbia, dentro de uma Conclusão de Avaliação de Ciclo de Vida.

Tal qual informaram corretamente os noruegueses quanto ao embate entre os VEs e VCIs, no que concerne às melhorias sobre o GWP, na Fase de Utilização dos mesmos:
  • Para os VEs, é melhor que se considere uma vida útil de tempo o mais longos possíveis, pois, assim, aumenta-se o tempo ele terão para consumir a energia mais limpa da eletricidade,  ao invés de combustíveis (obviamente que, tendo como desejado, que a eletricidade não seja gerada as custas de combustíveis), enquanto que;
  • Para os VCIs, ocorre justamente o contrário, ou seja, convém que considere uma vida útil de menor tempo.
Se conduzirmos tais raciocínios aos seus extremos, em suma obteremos o seguinte:
  • Convém aos VEs, não apenas que eles sejam usados mas, que o sejam pelo maior tempo possível, de preferência "até não aguentar mais" ou, se possível fosse, ad infinitum, ao passo que;
  • Convém aos VCIs, por sua vez, que eles sejam usados o pelo menor tempo possível, ou seja, se possível, não usar por tempo algum.
Agora eu posso relaxar e gozar: k kk k k kkk kk kk kkkk kk kk ...

Eu precisei conduzir os raciocínios, via lógica, para estes extremos, para que vocês pudessem ver que, tais interpretações absurdas, sobre dados, são mesmo possíveis, principalmente quando se pretende conduzir uma avaliação de uma maneira tendenciosa.

Você ainda deve considerar como desagravo, o fato de que eu cheguei aos absurdos pela via da lógica, enquanto muitos opositores dos VEs expõem como evidentes e lógicos, sentenças que propõem absurdos, obtidas das maneiras mais estapafúrdias.

Isso vem ocorrendo, inclusive, com muitas postagens ma Internet baseadas nesse mesmo artigo do Programa de Ecologia Industrial do Departamento de Engenharia de Energia e de Processos da Universidade Norueguesa de Ciências e Tecnologia (NTNU) que estamos apreciando. Dele se tem derivado falácias, contendo apenas algumas poucas argumentações absurdas, que finalizam em conclusões totalmente inconsistentes e errôneas e, sem maiores avaliações, ou mesmo explicações, induzem ao erro.

Bom, filosofias a parte, vamos aos fatos, o que será que os noruegueses encontraram na cadeia de suprimento da produção dos VEs que justifique aquelas estranhas e pesadas afirmativas que eles fizeram:
  • Os Impactos de Produção (sobre o GWP, obviamente) são mais significativas para os VEs do que os para os VCIs;
  • Os VEs apresentam um potencial para aumentos significativos de toxicidade humana, a ecotoxicidade da água doce, eutrofização da água doce, e os impactos de esgotamento de metal, em grande parte proveniente da cadeia de fornecimento de veículos.
Em resumo, eles afirmam claramente que, o processo de fabricar um VE é mais poluente, mais danosos o meio ambiente, do que o processo de se fabricar um VCI.

Mas, exatamente, de que parte do cadeia de fabricação dos VEs vem essa poluição e esse dano? Qual (ou quais) processo de produção é danoso ao meio ambiente ao ponto de prover um diferencial negativo considerável aos VEs, no que concerne ao GWP? Creio que isso só possa ser originado nos processos de fabricação de alguma das Partes de Eletroeletrônica do Sistema de Tração pois, no retante que existe, um carro é tal qual o outro carro.

Bem, de fato, parece que é exatamente por ai que o relatório do pessoal da NTNU tentara explicar esse diferencial. Isso começa a ficar claro quando eles fazem uma citação: "Em particular, a produção de equipamento eletrônico requer uma variedade de materiais, o que representa um desafio para a reciclagem e levanta preocupações sobre a toxicidade (Johnson et al. 2007)", e mencionam outros estudos que consideram a produção de bateria e / ou  de EV explicitamente, em níveis variados de detalhe e transparência.

Os resultados destes estudos, em geral, são apresentados como pontos Eco-Indicatores e são baseados em estoques confidenciais. A Daimler AG apresentou em 2009 os resultados de um estudo comparativo entre duas versões e um mesmo carro, uma versão híbrida e a outra VCI, a partir de uma perspectiva de LCA (Life-Cycle Assessment) completa. Este seria, provavelmente, o Inventário do Ciclo de Vida (LCI - Life-Cycle inventory), mais completo de um EV, no entanto, ele é para um híbrido, em vez de um VE puramente elétrico.

Obviamente que estamos interessados mesmo em VE puramente elétrico e, desejosos de compreender por que a cadeia e produção deles é danosa ao meio ambiente. Todavia, vamos antes abrir um parentese para entender um pouco sobre o conceito de LCA (Life-Cycle Assessment).

sexta-feira, 24 de agosto de 2012

A Eletroquímica do Lítio e sua Aplicação em Baterias de VEs (Parte 5/5)



Ligação para as partes anteriores:  Parte 1  -  Parte 2  -  Parte 3  -  Parte 4





Queda da Capacidade dentro do Ciclo de Vida:


Tem havido uma grande variedade de aplicações que utilizam baterias de íons de Lítio, além de mais recentemente elas serem empregadas, especialmente, também em VEs, devido à suas elevadas capacidades, densidades de energia, bem como a boa reversibilidade do processo. Porém, como ocorre com todas as baterias recarregáveis, um dos problemas associados com o desempenho de baterias Li-ion continua sendo o gradual desaparecimento da capacidade de armazenamento, ao longo de um período de tempo em que se realizam ciclos de carga e descarga.

A deterioração da capacidade (ou envelhecimento) é causada por vários mecanismos, os quais dependem dos materiais dos eletrodos, bem como, sobre o protocolo adotado para se carregar a bateria. Não que o protocolo seja o problema, em si, mas sim, a taxa de carga associada a ele pois, elevadas taxas de carga, que ocorrem nos métodos de carregamento rápido, fazem a bateria envelhecer mais rápido.

A queda da capacidade em células de lítio podem ser atribuídas a reações secundárias indesejáveis que ocorrem, principalmente, durante o processo de carga, o que causa a decomposição (degradação) de eletrolito, a formação da película passiva, a dissolução de material ativo e outros fenômenos.

A medida que as baterias são submetidas aos ciclos de carga / recarga, ocorre um paulatino aumento da resistência internas delas, resultando, consequentemente, na redução da tensão a plena carga, com maior queda de tensão e dissipação de maior potência na resistência interma (RINT), e em menor energia efetivamente entregue. É fato que o aumento da potência dissipada na RINT, eleva a temperatura média de operação da bateria, criando um ciclo vicioso, que acarreta na aceleração do envelhecimento. Também é fato que, quanto mais intensas as taxas com a qual as baterias são descarregadas em cada ciclo, maior a queda da capacidade, por ciclo.

Testes realizados em células de bateria comerciais 18650 de LiCoO2 (LCO) e de LiMn2O4 (LMO, como a que foi empregada no Nissan LEAF, ao menos até ano modelo 2013) mostraram que elas podem enfraquecer a capacidade entre 10% e 30%, respectivamente, após 500 ciclos de carga na taxa de 1C (taxa em em a bateria é descarregada no tempo de 1h), a temperaturas ambientes.

Além do mais, a perda de capacidade, por ciclo, aumenta com o aumento da temperatura ambiente, e portanto, este problema passa a ser acentuado em climas quentes, como o que temos em boa parte do norte-nordeste do Brasil.

Um ciclo de vida útil de vários milhares de ciclos de descarga / regarga estão sendo almejados para as baterias que estão sendo desenvolvidas para aplicações em VEs, antes delas atingirem menos 80% de capacidade no final da vida útil, mas tudo indica que capacidade extra terá de ser incorporada no projeto (mesmo que seja como capacidade oculta ao usuário), para compensar queda capacidade.

Na verdade, as baterias de híbridos plug-in e de VEs estão sendo projetadas de modo que o proprietário do veículo enxergue a mesma autonomia e desempenho, em final de vida útil, quando a capacidade da bateria de fato caiu de 20% (ou mais), comparativamente ao aquele ele experimentou no início.

Essa “ilusão” pode ser conseguida, não permitindo a utilização total da capacidade instalada durante a fase inicial da vida do veículo, ou seja, 20% da capacidade fica, inicialmente, escondida do utilizador.

A capacidade oculta é então progressivamente tornada disponível, a medida que o tempo passa e os ciclos de carga são realizados, com compensações progressivas, para compensar a perda de capacidade relativas aos ciclos e a idade. No fim da vida, 20% da capacidade se manterá escondida, mas isso é transparente para o condutor, que vai atingir a mesma autonomia ao longo da vida do veículo.

Esta estratégia significa que as baterias devam ser fabricadas 25% a maior do que a sua capacidade nominal efetiva. Dessa forma, também a exigência da quantidade de lítio empregado na formulação, aumenta, em conformidade, em cerca de 25%, acima da capacidade nominal da bateria.

No caso específico dos VEs puros, que dotados de baterias de alta capacidade de energia, o fator preponderante associado à redução da vida útil tende a se concentrar no método de recarga.

Com as tecnologias de baterias atuais, para se maximizar o tempo de vida útil delas, é altamente recomendável (e isso consta, claramente, dos manuais de proprietários dos VEs) se reduzir ao mínimo a utilização de métodos de carregamento rápido, que implicam em taxa de recarga elevadas, maiores do que 1C, priorizando-se, ao máximo o carregamento normal, menores do que 1C. 1

Já, no caso das baterias dos PHVEs (híbridos Plug-in) as questões envolvidas são um pouco mais complexas, abrangendo de modo mais serio, também, a forma mais exigente como a bateria é descarregada, que é de uma maneira, comparativamente, bem mais brusca do que em um VE puro. Tal fato tem resultado na divisão de duas vertentes de concepção de projeto de baterias Li-íons, que denominaremos, informalmente, “Bateria de Energia” e “Bateria de Potência”, como veremos a seguir.

Bateria de Energia” vs “Bateria de Potência”:


Uma das dificuldades iniciais que eu mesmo tive quando eu comecei a estudar sobre a tecnologia das baterias de íons de Lítio foi, justamente, entender o “por que” os pesquisadores e fabricantes falavam tanto em “energia específica”, quanto em “potência especifica”, enquanto que, para mim, apenas a energia especifica parecia fazer sentido.

Hoje eu sei que aquilo ocorreu por puro preconceito meu, que na época (2009 – 2010), eu me preocupava apenas em entender sobre VEs puros, aguardando, com sofreguidão o lançamento por parte de alguma grande montadora de um VE puro que viesse ter a ter relevância mundial (até que veio o Nissan LEAF).

Eu simplesmente me recusava a aceitar a ideia de tentar entender sobre carros híbrido. Satisfeito o meu ego, e vencida aquela fase, eu pude lançar uma nova luz sobre a interessante variedade de tecnologias das células de baterias de Li-íons, tanto para VEs puros, quando para os Híbridos, que eu, antes, desprezava.

Uma “bateria de potência” é projetada visando o desafio de ter a habilidade de liberar sua carga bem mais rapidamente, de modo que ela possa fornecer uma alta potência, de uma forma bem mais abrupta. Isto se aplica as necessidades especiais dos veículos híbridos e tem sido conseguido, fazendo com que os elétrodos das células sejam bastante mais finos mas, com uma área de superfície grande, de modo que uma maior número de possíveis portadores de carga estejam perto da superfície do eletrodo.

Dessa forma, os átomos de Li podem, então, ionizar mais rapidamente para passar ao eletrolito e mover-se para o cátodo e ser intercalados no cátodo.

Revestimentos finos são, também, necessários devido à baixa condutividade dos eletrolitos não aquosos empregados (~ 10 mS/cm, ou seja, 10 mili-Siemens por centímetro), e ao fato de que os iões Li+ difundem-se lentamente através dos materiais de ânodo e cátodo e eletrólito, buscar acelerá-los é uma necessidade premente, neste caso.

A tecnologia LiFePO4 (LFP) é a que tem uma difusividade particularmente pobre mas, isso não a torna, simplesmente, imprestável para ser uma “bateria de potência”, a ser empregada em veículos híbridos.

Na verdade, a Lítio Fosfato de Ferro (LiFePO4) é apenas um dos materiais catódicos utilizados na classes das baterias de lítio fosfato de ferro que está recebendo a atenção da indústria automobilística para emprego em veículos híbridos.

A Valence Technologies produz uma bateria de Lítio Fosfato de Ferro Manganês (LiFeMnPO4), enquanto que a LG Chem vende baterias de lítio fosfato de ferro (LiFePO4) para o Chevrolet Volt e a A123 produz uma bateria de lítio nano-fosfato.

Assim, as baterias de lítio fosfato de ferro são apenas um dos três principais tipos contidos na família LFP, e ela continua sendo aplicável, com destaque para a elevada segurança e longa vida útil.

No entanto, curiosamente, a energia específica de uma "bateria de potência" é baixa porque a área de superfície em relação ao volume é alto – em verdade os eletrodos têm muito pouco volume interno para armazenar carga, uma vez que eles são tão muito finos.

Frente às dificuldades encontrada para que a tecnologia do lítio atendesse as demandas da indústria automobilística de veículos híbridos, em seus primórdios (lá nos idos em que, simplesmente, mataram os VEs), fez com que carros como o Toyota Prius fosse vendido no Japão, por mais de 13 anos consecutivos, com baterias de tecnologia NiMH, só vindo a adotar baterias de Lí-ion apenas recentemente, quando evoluiu também de HEV (hibrido sem conector para carregamento) para PHEV (híbrido recarregável), tornando-se plug-in.


PHEVs normalmente exigem baterias para ciclos de carga e descarga mais profundos do que os “veículos híbridos convencionais” (não plug-in). Como o número de ciclos completos influencia a vida da bateria, mantendo-se a tecnologia NiMH, esta tenderia a ser menor do que em híbridos tradicionais, que não gastam as suas baterias totalmente.

No entanto, a tendência é a de que PHEVs se tornem um importante padrão na indústria automóvel. Questões de design e de compromisso contra a vida da bateria, a capacidade de dissipação de calor, peso, custos e segurança precisam ser resolvidos. A tecnologia avançada da bateria está em desenvolvimento, prometendo maiores densidades de energia em massa e volume, e é esperado um aumento na expectativa de vida da bateria.

Para aumentar a energia específica, suficiente para armazenar as quantidades muito maiores de energia (carga) necessária para uma PHEV ou BEV, os elétrodos devem ser feitos mais espessos e com um volume apreciável a fim de armazenar armazenar mais carga.

A diminuição relativa da superfície em relação ao volume e, portanto, mais espesso, torna menos acessíveis a passagem para os portadores de carga armazenados no interior.

Assim, é o volume dos elétrodos que dita a capacidade de armazenamento (bateria de energia) enquanto a área de superfície dita taxa máxima de descarga (bateria de potência).

Assim, por definição, uma bateria de alimentação num veículo híbrido, que é necessariamente optimizada para taxa de descarga ("bateria de potência"), terá menor capacidade de armazenamento de energia nos seus elétrodos, do que uma bateria que tenha sido concebida para ser “bateria de energia”, com com elétrodos da mesma área de superfície, mas uma maior espessura.

A desvantagem para a bateria de energia é a de que os elétrodos mais espessos apresentam agora um maior impedimento para o transporte dos íons de lítio portadores de carga: eles têm maior resistência interna e irão sofrer perdas de energia mais elevada no interior da bateria.

Portanto, embora a capacidade de energia da bateria possa armazena mais energia em geral, proporcionalmente, ela perde eficiência energética no fornecimento dessa energia para a carga. Isso é inevitável.

Portanto, como o mercado se move no sentido da densidade de energia mais elevada, baterias Li-íon optimizadas para aplicações PHEV e BEV, a eficiência de utilização de lítio com base nesta métrica cairá, em comparação com a energia em baterias de lítio de potência, e mais lítio por unidade de armazenamento de energia kW.h será necessário, em baterias de energia otimizadas para PHEVs.

Em uma postagem anterior desta mesma série, nós vimos na seção em que apresentamos um "Diagrama de Ragone", com um material de catodo otimizado para o armazenamento de energia (o material 90-5-5 Phostech), ao invés de fornecimento de energia, é fortemente influenciada pela alta taxa de descarga, que torna a aplicação PHEV particularmente exigente - 50% da capacidade nominal pode ser perdida em estradas de altas velocidades.

Purificação Carbonato de Lítio:


Um outro fator que está sendo permitido é o rendimento do processo para purificar o carbonato de lítio grau técnico bruto em Carbonato de Lítio purificado de baixo teor de sódio (99,95%) necessário para o fabrico das células de bateria.

O Li2CO3 grau técnico produzido a partir de Atacama contém cerca de 0,04% de sódio (Na). Isto precisa ser reduzido para menos de 0,0002% de Na para utilização em baterias. Em alguns casos, uma pureza do Carbonato de Lítio ultra elevada de 99,995% é necessária.

Enquanto rendimentos de mais de 80% são possíveis em escala de laboratório, isto é mais difícil de realizar industrialmente, especialmente quando os requisitos de controle de pureza aumentam. 70% pode ser um valor para o rendimento mais realista de ser usado.

Conclusão:


Este documento informativo foi destinado a ilustrar a um não-especialista, os principais fatores reais eletroquímicos que reduzem significativamente a energia teórica específica e densidade de energia das baterias Li-íon.

Os principais fatores que reduzem a capacidade teórica de uma bateria de Li-íon são:

Perda irreversível de capacidade: lítio, que se torna irremediavelmente ligado ao anodo e ao catodo tornando-se inativo eletroquímico. Isto pode ser tão elevado quanto 50% do lítio originalmente posto no cátodo, antes que a bateria seja carregada pela primeira vez.

Taxa de descarga: esta é a principal variável que reduz paulatinamente a capacidade efetiva, enquanto a bateria estiver em uso. As “baterias de potência” necessárias para a utilização PHEVs, são mais sensíveis a este problema do que as “baterias de energia” e que o problema é ainda agravado por uso de baterias pequenas em um PHEV. Mais uma vez, até 50% da capacidade efetiva pode ser perdida em meio a altas velocidades.

Informações de fabricante sobre capacidades que só se aplicam às taxas de descarga baixas são de pouca utilidade na determinação de um ponto de referência realista para a capacidade da bateria de PHEV. Capacidade verificadas a taxas de, pelo menos, 1C deveria ser usado como um indicador realista.

Ciclo de queda capacidade de vida: baterias de VE são efetivamente 25% maiores do que a capacidade nominal declarada o para encobrir a queda de capacidade.

Um mundo real de bateria Li-íon para VE proporcionará nominalmente cerca de 25% da capacidade de energia teórica, ou seja, de 70 a 120 W.h / kg, em vez de ilusórios 410 - 450 W.h / kg. Isto traduz-se um requisito de lítio de pelo menos 320 g de lítio (1,70 kg de LCE, uma vez que 1 g de Li é encontrado em 5,323 g de Li2CO3) por kW.h de capacidade disponível.

Além disso, mais lítio deve ser adicionado a esta para compensar as perdas no eletrolito, de capacidade irreversível e de queda de capacidade.

As baterias de VEs são de dimensões reais 25% maiores do que a declarada, como forma de camuflar a queda de capacidade. Então uma provisão extra tem que ser feita subsídio tem de ser feita devido ao rendimentos do processo de purificação a partir do carbonato de lítio de grau técnico bruto ser de apenas 70%, mais as perdas inevitáveis no uso de controle de fabrico de componentes de alta pureza de Carbonato de Lítio da bateria em si.

Se, portanto, permitir algo em torno de 400 g de lítio (2,13 kg de LCE) por kW.h de bateria, com um rendimento de transformação de 70% para produzir aquele, um período inicial de 3 kg de carbonato de lítio de grau técnico em bruto será exigido por kW.h de capacidade da bateria definitiva utilizável.

Com 3 kg de LCE grau técnico como matéria prima por kW.h, a produção global atual de cerca de 100.000 toneladas matéria prima LCE seria suficiente, se toda disponível, para produzir apenas, cerca de 2 milhões baterias de 16 kW.h por ano. Mesmo a uma quantidade otimista de apenas 2 kg de LCE por kWh, assumindo rendimento de pureza muito elevada, a produção seria suficiente para produzir apenas 3 milhões de baterias de 16 kW.h PHEV por ano.

Assim, em 10 anos, precisaremos ao menos triplicar a produção mundial de lítio, ou corremos o risco de ver no mercado automobilístico, os VEs se tornando como que bonecas de porcelana, permanecendo raros e caros.

Lista de Normas e Práticas Recomendadas sobre Bateria no Âmbito Comitê Gestor da SAE:






Notas:
  1. Dai, a persistência deste humilde2 blogueiro, em apregoar a importância da disseminação das Estações de Carregamento Domésticas, mesmo em locais do mundo que venham a se tornar privilegiados com infraestrutura de carregamento público (carregamento rápido).
  2. E mal intencionado, sim, também, pois gostaria mesmo de poder tocar a "minha star-up", te vendendo as melhores EVSE de emprego doméstico, que eu já aprendi a fazer.

Fim!


Ligação para as partes anteriores:  Parte 1  -  Parte 2  -  Parte 3  -  Parte 4


Outros Tópicos Correlatos:


Bateria de Veículos Elétricos (Nissan LEAF)





Licença Creative Commons
Este trabalho de André Luis Lenz, foi licenciado com uma Licença Creative Commons - Atribuição - NãoComercial - CompartilhaIgual 3.0 Não Adaptada.