Mostrando postagens com marcador energia elétrica. Mostrar todas as postagens
Mostrando postagens com marcador energia elétrica. Mostrar todas as postagens

quinta-feira, 21 de agosto de 2014

Micro Hidrogeradores de Energia Elétrica Residenciais e os VEs (Parte 1/2)


Ao tratarmos do assunto sobre “Micro Hidrogeradores de Energia Elétrica Residenciais”, no âmbito dos Veículos Elétricos (VEs), convém lembrarmos da motivação maior que tem nos levado, de modo persistente, pelo caminho do desenvolvimento dessa tecnologia: nós acreditamos que os VEs são muito mais do que simplesmente mais um tipo de carro! Acreditamos os VEs nos darão (e já estão dando) a oportunidade, não apenas de poder dirigir um carro com emissão zero de Carbono, mas também a de poder desfrutar de mobilidade com um veículo silencioso, limpo, divertido, além deles serem muito mais simples e fáceis de se fabricar e de menores custos de manutenção.

Quando dizemos limpos e com emissão zero de Carbono, significa que essa é a nossa meta e, mesmo que isso pareça intangível, a busca por ela é o que mais importa e, nisso, inclui-se o desenvolvimento de toda uma cultura de energia renovável e limpa, numa abrangência que a humanidade até agora, ainda não havia buscado.

Nesse "oceano de preocupações" por energia, e pelo meio ambiente, inúmeras vertentes tecnológicas convergem. Diversas tecnologias podem ser pensadas, como subsistemas que, agregadas, depois, como partes integrantes de um sistema maior, futurístico que, muito provavelmente, se você viver algumas décadas mais, poderá estar dentro da sua casa, com VEs, energia solar, eólica, gás, e outros aparatos, tudo interligado, sistematicamente, em armazenagem integrada de energia. É neste contexto que a "ideia" do emprego dos Micro Hidrogeradores de Energia Elétrica Residenciais pode se encaixar, e muito bem.

As respostas para perguntas alvo, buscadas aqui, serão, entre outras, principalmente as seguintes: É possível extrairmos alguma energia do fluxo de água que abastece um reservatório doméstico típico? Quanto de energia podemos extrair, sem comprometer a qualidade do serviço de abastecimento? Qual a forma mais adequada de se implementar isso? (local e equipamento de instalação adequado existe?)

Mini Gerador Fluxo de Água Hidro 12V 10W (vendidos no Mercado Livre por preço entre R$ 51 e R$ 68)

Antes de irmos ao foco, convêm darmos uma boa olhada num esquema típico de ligação dos elementos de um Sistema Urbano Padrão de Abastecimento de Água, a fim de projetarmos uma devida contextualização, até mesmo porque, muitas das considerações sobre princípios de hidráulica, que se aplicam a este macrossistema, como, por exemplo, conceitos sobre vazão e pressão estática, de estagnação e dinâmica, etc, guardadas as devidas proporções, aplicam-se, também, ao microssistema hidráulico que encontramos a partir da tomada de água da rede de distribuição para uma residência, onde os tais Micro Hidrogeradores de Energia Elétrica possam, por ventura, ser aplicados.

Diga-se de passagem, penso que, poder escrever e ler sobre esse assunto, diante da crise de abastecimento de água, que ora vivenciamos em São Paulo, pode ser algo muito conveniente, trazendo a baila um tema que deve ser de interesse de todos. Para uma melhor compreensão, o referido esquema pode ser racionalizado em duas partes principais:
  • Centrais de Produção de Água;
  • Rede de Distribuição Arterial, conforme o diagrama abaixo:




Visto isso, creio que podemos tentar evitar um maior detalhamento operacional da primeira parte, e convenientemente, partirmos diretamente para uma breve explanação sobre a segunda parte, que é a de maior interesse, pois, este é o subsistema que, na sua terminação de sua saída, irá abastece com o produto água potável, os consumidores residenciais e prediais.

Numa Rede de Distribuição Arterial, primeiro encontramos, ao menos, uma Adutora de Água Tratada, que é um elemento de conduto, que serve ao transporte da água entre elementos do sistema, antes dela ser servida à Rede de Distribuição. As adutoras ligam as Estações de Tratamento de Água aos Reservatórios, ou às Estações Elevatórias, que eventualmente possam existir após as estações de tratamento, e estas aos reservatórios. 

Assim como as Adutoras de Água Bruta (água capitada, porém ainda não tratada), estas também podem funcionar por Recalque ou por Gravidade, em Condutos Livres ou Forçados. A adução por gravidade constitui o meio mais seguro e econômico, em termos de Consumo de Energia, e de Custos de Implantação de Infraestrutura e de Manutenção, para se transportar a água. Todavia, nem sempre existe um desnível descendente do terreno, suficiente para conduzir por gravidade, garantindo a vazão e a pressão que são necessárias entre os pontos a serem interligados.

Nestes casos, estações elevatórias são necessárias e as adutoras a elas ligadas são classificadas como adutoras por recalque. As adutoras estão sujeitas a traçados muito diversos em decorrência de variedades topográficas ou geotécnicas, além de critérios técnicos e econômicos dos sistemas.


Uma função destas estruturas é, também, aumentar a capacidade de adução do sistema, aumentando a pressão nos condutos. As estações elevatórias de água tratada normalmente são instaladas após as estações de tratamento de água para o bombeamento do líquido até os reservatórios. As elevatórias podem também estar entre reservatórios, ou ainda, em algum trecho da rede de distribuição de água, e neste caso, são mais conhecidas pelo termo boosters.

Seguindo na direção do consumo, a função subsequente às adutoras é a dos reservatórios de água. Em geral, são estas estruturas que estabelecem os limites e fazem a transição entre a rede de transporte arterial e a rede de distribuição final, funcionamento como elementos de regularização entre as vazões de adução e a de distribuição, e ainda como estrutura de regularização da variação de pressões na rede de distribuição.

É raro um sistema de abastecimento que não necessite de trechos de adução de água tratada com instalações de estruturas elevatórias. Desta forma, os reservatórios assumem também a função de atuar como regularizador das variações na vazão de recalque, consistindo em elemento de arranjo estratégico na redução do consumo de energia elétrica.

A instalação de reservatórios após uma estrutura elevatória possibilita que a energia potencial da massa d'água seja armazenada e, com isso, o bombeamento de recalque possa ser interrompido, em determinados intervalos de tempo do dia, com nos horários tarifas de energia elétrica maiores, por exemplo.

Os reservatórios servem, também, como estratégia de adaptação de traçado de adutoras, em função das situações do terreno (ver casos na figura abaixo), e de economia dos componentes na rede de distribuição principal, uma vez que as adutoras, subadutoras e elevatórias que o antecedem, podem ser, assim, projetadas com um diâmetro reduzido, em função da combinação entre o consumo médio previsto, as distâncias e a reservação. Com estes arranjos, somente a rede posterior às estruturas dos reservatórios precisam ser projetadas, obrigatoriamente, para situações de pico de consumo máximo.

As linhas piezométricas (Lp, representadas no desenho a seguir) são linhas imaginárias que, em um canal aberto, tem seus pontos de apoio sempre coincidindo com a superfície do fluido (seccionando o plano de carga estática, que é a linha imaginária rente a superfície do fluído nos reservatórios), e que representa apenas as parcelas estáticas da carga.

Reservatórios como função de adequação do traçado das adutoras:
1- Situação em que o terreno da estrutura de armazenagem intermediária se eleva acima da linha piezométrica;
2- Situação em que a armazenagem intermediária permite a redução da pressão nos dutos.

Já, por sua vez, a linha de energia (que não se aplica ao desenho anterior) é uma linha imaginária que representa a altura de carga total, que permanece constante para um escoamento sem atrito, quando não é realizado nenhum trabalho sobre ou pelo líquido em escoamento (bomba ou turbina), e ela assume a carga do líquido ideal fluindo pelo duto ou canal aberto, considerando a somatória da estática e da dinâmica da carga, quando a parcela dinâmica se aplica, onde há carga associada à mudança de velocidade (dinâmica), devido ao uso de redutores de duto.  Ambas estas linhas proporcionam ajudas e dicas importantes para a localização e correção de pontos problemáticos em um escoamento (usualmente pontos de baixa pressão).

Quanto à forma, os reservatórios podem ser enterrados, semienterrados, apoiados ou elevados. A forma deve ser adequada à função do reservatório no sistema, à necessidade de altura piezométrica e a capacidade de reservação.

Os reservatórios assumem, ainda, funções dentro da distribuição. A posição dele na rede de distribuição pode ser a jusante ou a montante, e é possível também ter um arranjo que combine os dois. Sua função é, na transição entre a adução e a distribuição, além de simplesmente a de armazenamento, também regularizar vazões e adequar pressões na rede de distribuição.

Os reservatórios a montante sempre fornecem água à rede de distribuição, e consistem na alternativa mais usada nos sistemas implantados. 





Em função da extensão da rede de distribuição a que servem, os reservatórios de montante tendem a produzir variações acentuadas nas cargas piezométricas, nos extremos dessas redes, nos períodos de redução da demanda de consumo de água.


Por isso, a localização ideal desse tipo de reservatório é o centro das zonas de consumo, mas nem sempre isso é tecnicamente possível. Além disso, em função da própria topografia em que é assentada a rede, pode haver necessidade de reservatórios secundários, em geral elevados, que dividam as cargas piezométricas, minimizando as pressões nas áreas de menor cota, desenhando diferentes zonas de pressão numa rede de distribuição.


Os reservatórios podem, ainda, também ser a jusante, e trabalham fornecendo água nos períodos de maior demanda ou recebendo água nos de menor demanda. Pela mesma tubulação a água aflui e eflui. Por isso, podem ser denominados também reservatórios de sobra.


Já, por sua vez, a rede de distribuição é a interface final, a última mediação entre o recurso, agora produto, água potável, e o consumidor. E constituída por tubulações e equipamentos acessórios instalados em logradouros públicos, como redes de formas variadas, e têm por finalidade fornecer 24h por dia, em regime contínuo, água potável em quantidade, qualidade e pressão adequada à demanda de consumidores de sua área de atendimento.

As redes de distribuição são as unidades mais extensas dos sistemas de abastecimento e respondem por mais de 50% dos seus custos de implantação. Uma rede de distribuição mal operada ou mal projetada é sempre fonte de permanente problemas, mormente no que tange às perdas de água, ao comprometimento da qualidade da água e as reclamações dos usuários.

Para funcionar bem, a rede de distribuição deve estar sujeita a uma pressão mínima e a uma pressão máxima. A pressão mínima é necessária para vencer os desníveis topográficos e as eventuais perdas de carga no ramal predial e nas tubulações internas aos prédios abastecidos, garantindo que a água atinja os reservatórios prediais. (1)

A pressão dinâmica (pressão, referida ao nível do eixo da via pública, em determinado ponto da rede, sob condição de consumo não nulo) mínima é aquela garantidamente capaz de atender ao abastecimento, mesmo na condição de dia e hora de maior consumo (ou demanda de água), com o menor volume de água no reservatório correspondente àquela rede de distribuição;

A pressão estática (pressão, referida ao nível do eixo da via pública, em determinado ponto da rede, sob condição de consumo nulo) máxima corresponde ao limite em que as tubulações, válvulas e conexões garantidamente operem com integridade, e também permitam a manutenção do controle das perdas físicas. (2) 

O critério das perdas físicas é uma questão econômica relevante, e relativamente recente nos cálculos da pressão estática máxima, porque em tubulações defeituosas ou com furos devido à corrosão ou rompimento, o volume que se perde varia como uma função quase linear da pressão nas tubulações. A pressão estática máxima é, assim, aquela mais adequada, à manutenção da integridade da rede e do controle dessas perdas, calculada para os picos de menor consumo de água (consumo nulo), e considerando a ocorrência de nível máximo no reservatório correspondente àquela rede de distribuição.

A NBR 12218 (ABNT, 1994, item 5.4.1) estabelece a pressão dinâmica mínima nas redes de distribuição de água como sendo de 100 kPa (quilo pascal), enquanto a pressão estática máxima estabelecida para as mesmas redes é de 500 kPa, com exceção podendo ser feita para casos específicos em condutos principais que não abasteçam diretamente consumidores ou tubulações secundárias, e que se justifica técnica e economicamente a transgressão destes valores limite, e sob verificação de sua estabilidade estrutural e segurança sanitária.

Desta forma, o projeto de uma rede de condutores secundários: ramais prediais de tubulações de menor diâmetro que têm contato direto com as entradas de água dos edifícios (casas e prédios) abastecidos, pode apresentar a forma ramificada ou a forma de rede malhada, preferível a adoção da ligação formando malha, podendo ou não todos os pontos de cruzamento interligados, e o traçado da rede (conjunto de condutos principais e secundários), deve buscar o maior esforço para concentrar-se entre os limites de 100kPa e 500kPa de pressão, já considerando eventuais estabelecimento de diferentes Zonas de Pressão (áreas abrangidas por subdivisões da rede, separadas por cota altimétrica, na qual as pressões estática e dinâmica obedecem aos limites prefixados).

"Se a diferença entre a maior e menor cota altimétrica da área de projeto (área com abastecimento) for inferior a 40 m, haverá apenas uma zona de pressão. Se essa diferença for maior que 40 m, haverá a necessidade de (estabelecer) mais de uma zona de pressão, sendo que, para cada diferença de mais de 40 m, haverá a necessidade de uma zona de pressão (extra). Para cada diferença altimétrica máxima de 40 m, há que se tomar pelo menos mais 10 m (de intervalo inicial) relativos (a garantia) à pressão dinâmica mínima". (HELLER e PÁDUA, 2006: 613) 

Uma vez que a pressão especificada na norma é de 500 kPa, que corresponde, precisamente, a 50,986 mca (metros de coluna d'água, também representado por mH2O, sendo que 1 mca = 9,80665 kPa), na citação acima, Heller e Pádua idealizam um desenho com medidas (em metro) ligeiramente arredondadas para menos.

Como é comum em edifícios que o abastecimento de água aos apartamentos aconteça por gravidade, a partir de um reservatório superior, a subdivisão da rede em zonas de pressão é algo que se aplica, inclusive, no caso de edifícios mais altos, onde o projeto do sistema hidráulico deve ter o cuidado de garantir a limitação da pressão da água nos andares inferiores.

Neste caso, segundo a norma brasileira, a pressão estática (quando todos os registros estão fechados e o reservatório está com carga (volume) máxima de água) não pode ultrapassar 40 mca (392,3 kPa), nos pontos de consumo dos apartamentos, para não causar dano às tubulações, ramificações e equipamentos hidráulicos, gerando vazamentos dentro dos apartamentos. Para evitar esses problemas, são utilizadas Válvulas Redutoras de Pressão nas redes hidráulicas. Esses equipamentos regulam a pressão da água no seguimento da rede após elas, mantendo-a dentro dos limites especificados.

Imagem emprestada do site:
http://equipedeobra.pini.com.br/construcao-reforma/35/valvulas-redutoras-de-pressao-213991-1.aspx

Obviamente que, concomitantemente, a cota altimétrica do reservatório superior deve ser alta o bastante para garantir uma pressão dinâmica mínima nos pontos de consumo do andar superior do edifício, mesmo com carga de água mínima no reservatório. Assim, a diferença que existe entre uma rede de abastecimento interna a um edifício, e uma rede de distribuição pública de água, é apenas quanto a magnitude dos números, de modo que, válvulas reguladoras de pressão, adequadamente dimensionadas, aplicam-se, também, nas redes de distribuição públicas. 

As válvulas reguladoras de pressão são equipamentos mecânicos, acionados hidraulicamente, que permitem regular a pressão a jusante proporcionando a redução de vazão dos vazamentos, sendo que sua utilização é recomendada em áreas onde as pressões médias estejam acima do estabelecido pela NBR 12218/1994. Uma das características mais marcantes da tecnologia que utiliza tais válvulas é que sua implantação requer, obrigatoriamente, uma área de atuação bem definida na rede de distribuição de água, configurando um subsetor (zona de pressão) ou um Distrito de Medição e Controle (DMC).

Válvula de controle auto-operada unidirecional de
 diafragma DN 150, reduz uma pressão de entrada  alta
e variável em uma pressão menor e constante de saída,
independente da variação da vazão, proporcionando
o autocontrole por intermédio de um conjunto
composto  de um diafragma ligado a um obturador.
Assim, o dimensionamento e a regulagem de uma válvula redutora de pressão devem levar em conta os valores recomendados pela norma, possibilitando o funcionamento adequado do setor ou da zona de pressão na rede de distribuição de água a ser controlada. A regulagem da pressão a jusante da válvula definirá a diferença entre a pressão de entrada e a de saída da válvula.

Existem, basicamente, três tipos de válvulas reguladoras de pressão sendo empregadas em redes e distribuição:

Saídas fixas: Pressão de saída mantida constante ao longo do tempo;
Controle por tempo: Pressão de saída varia em função dos horários (pré-programada);
Controle por vazão: Pressão de saída varia em função da demanda.

O último caso, é, na verdade, uma Válvula Controladora de Vazão. Independente se a variável controlada é a pressão ou a vazão, todos estes tipos de válvula são de controle automático (válvulas de controle auto-operadas, unidirecional), permitindo o controle automático da rede de distribuição de água, adequadas para tubulações DN 50 (diâmetro nominal 50 mm) até DN 600.

Todavia, o estabelecimento de diferentes zonas de pressão não é o único condicionante para a implantação de uma rede de distribuição. Os locais para instalação dos reservatórios de distribuição que são, em última instância, os comandos da pressão predominante na rede de distribuição, condicionam a forma da rede, e devem considerar a maior proximidade com o centro de consumo, as características topográficas e geológicas para sua implantação, remetendo ao importante conceito de setor de abastecimento.

Não obstante o muito que este tema ainda poderia ser explorado aqui, eu creio que a contextualização ora apresentada, já é mais do que suficiente para partirmos, agora, para contemplar o foco de maior da nossa atenção nossa, que é o do emprego dos Micro Hidrogeradores de Energia Elétrica Residenciais.

No entanto, não faremos isso sem, antes, aproveitarmos o momento em que ainda estamos falando a respeito das grandezas Pressão e Vazão Hidráulica em redes de distribuição de água, para introduzirmos o conceito de mais uma grandeza, a Potência Hidráulica, para, em seguida, fazermos uma pertinente analogia destas grandezas com as grandezas elétricas correlatas, Tensão e Corrente Elétrica, bem como a Potência Elétrica, com as quais teremos que nos envolver ao tratarmos do assunto dos Micro Hidrogeradores de Energia Elétrica. 

Note que, uma vez que os fenômenos hidráulicos podem ser facilmente observados a “olho nu”, o comportamento dos circuitos hidráulicos é utilizado com muita frequência como analogia, na estratégia do ensino da eletricidade básica para novos alunos, haja vista que nem todos esses aprendizes chegam ao curso, já com a capacidade de visão espacial desenvolvida, quanto ao comportamento dos fenômenos elétricos. A motivação do emprego dessa analogia é bem esse mesmo: a água podemos ver e os elétrons, não.

Como já foi abordado, em hidráulica, desde que entre as linhas piezométricas de dois reservatórios haja alguma diferença de cota altimétrica, existe, entre eles, uma diferença de potencial hidráulico, ou seja, existe pressão, cuja intensidade é diretamente proporcional àquela diferença de cota altimétrica existente.

Reservatórios com cotas altimétricas diferentes entre suas linhas piezométricas, podem estar com suas bases assentadas tanto em terrenos de altitudes diferentes entre si, quanto em terrenos de mesma altitude pois, neste caso, o que importa é o nível relativo da carga de água contido neles que, se porventura resulta em cotas distintas entre suas linhas piezométricas, então, resulta também em pressão entre eles.

Repare que eu falei em dois reservatórios, mas eu sequer mencionei se eles estão ou não interligados e, se estiverem, se a tubulação de adução está livre ou bloqueada (se são ou não vasos efetivamente comunicantes). É prática comum a utilização de válvulas em circuitos hidráulicos com a finalidade de bloqueio (liga ou desliga a passagem de água) e, na ligação entre reservatórios, não é diferente. Se a válvula estiver fechada, a pressão que se faz relevante é a estática (que independe da vazão) e, se aberta, é a pressão dinâmica que deve ser considerada (obviamente existindo também vazão).

Assim, a pressão existe, independente se haja ou não vazão (fluxo) de água (como é o caso da pressão estática).

Pois bem, em circuitos elétricos, a Tensão Elétrica é a grandeza que equivale à Pressão nos circuitos hidráulicos. Assim, tal como para haver pressão é necessário que uma quantidade de carga de água (volume de água) sobressalente esteja armazenada em um reservatório, enquanto ela falta, relativamente, em nível, em outro, para haver tensão elétrica é necessário que uma quantidade de carga elétrica (quantidade de elétrons) esteja armazenada em um eletrodo, enquanto ela falte, em nível relativo, em outro  . Isso cria o que chamados de diferença de potencial (d.d.p.) elétrico, que caracteriza a tensão elétrica.

Tal qual ocorre com a pressão em hidráulica (que pode existir mesmo que não haja vazão), a tensão elétrica também pode existir, com ou sem a presença de Corrente Elétrica. Se você estiver olhando para uma bateria que esteja eletricamente carregada repousando sobre uma bancada de oficina, não havendo nenhum cabo condutor elétrico conectado aos bornes terminais de seus dois polos elétricos (positivo + e negativo -), então, decerto, ela não produzirá nenhuma corrente elétrica (tal como dois reservatórios em desnível de cota, mas que não estejam interligados).

Todavia, a tensão elétrica, está, sim, presente entre seus dois polos, e pode, inclusive, ser medida com auxilio de um voltímetro, o que revela que existe um “potencial” para a condução de corrente. Assim, de modo inerente, uma bateria é uma Fonte de tensão (mas, não, necessariamente, uma fonte de corrente).

Ao interligarmos os polos de uma bateria com um condutor para que haja corrente elétrica, convém que haja, também, a inclusão de uma Resistência Elétrica, a fim de limitar a corrente que fluirá. No caso da hidráulica, a resistência é provida pela própria tubulação, de modo inversamente proporcional ao diâmetro da seção e diretamente proporcional ao comprimento da tubulação e, em elétrica, a grandeza resistência é semelhante, somente diferindo pelo fato de que, em elétrica, podemos jogar com uma grande variedade de tipos de materiais que são utilizados como meios para se conduzir a corrente elétrica.

Assim como em hidráulica, o material interno de um filtro de água, por exemplo, não apenas cumpre a função de filtragem, como, também, atua como uma forte resistência, se opondo a passagem da água e limitando a vazão, em elétrica alguns materiais específicos, de maior ou menor resistividade (atributo de qualidade da resistência), são utilizados para prover uma resistência elétrica adequada. Outros elementos, como as válvulas, também oferecem resistência, que pode ser ajustada, modificando a vazão

Sem  a existência de uma resistência elétrica adequada, apenas fluindo pelos cabos condutores que apresentam baixíssima resistência, a corrente elétrica se tornaria muito elevada, tendendo, mesmo, ao infinito, em sua magnitude. Isso pode ser constatado apenas por avaliar a fórmula da lei de Ohm, na qual a corrente elétrica (i) é determinada pela razão entre a tensão (U) e a resistência (R).

Em elétrica, a corrente elétrica é a grandeza que equivale à vazão em hidráulica. Assim como a vazão que, além de pressão requer um caminho (tubulação) para fluir, a corrente elétrica requer, também, um caminho (formado pelos condutores e resistência interligados em conjunto) para fluir, que junto com a fonte de tensão, forma o circuito elétrico.

Em hidráulica, considerando que o fluido homogêneo escoe por uma tubulação a partir de uma fonte (reservatório), sem que haja outras fontes interligadas ao sistema, interagindo, ou sumidouros, então, a vazão é sempre a mesma em qualquer ponto ao longo da tubulação. Ou ainda, mesmo que haja outras fontes e múltiplos consumidores, vale a a regra que dita que a soma das vazões dos fluidos que entram no sistema é igual a soma das vazões dos fluidos que saem. Esse principio é o mesmo que se aplica a 1ª Lei de Kirchhoff (Lei das Correntes, ou Leis dos Nós, ou LCK) para circuitos elétricos. Assim, num circuito puramente em série, a corrente elétrica é a mesma, medida em qualquer ponto do circuito.

É importante notar que, tanto a vazão hidráulica, quanto a corrente elétrica, apesar de ambas estarem intimamente relacionadas a velocidade com que seus respectivos tipos de carga (água e elétrons) circulam pelos circuitos, elas não são, e nem ao menos expressam, a velocidade dessas cargas, em si. Em hidráulica, a vazão costuma ser medida em Q/Δt (quantidade de carga por intervalo de tempo), geralmente nas unidades de medida l/min (litros por min) ou em m3/min (metros cúbicos por minuto), enquanto que, por sua vez, a velocidade é medida em m/s (metros por segundo), não estando, portanto relacionada a quantidade de carga (Q) mas, tão somente, ao deslocamento dela.

Ao longo de um circuito de fluxo hidráulico em série, apesar da vazão (Q/Δt) ser a mesma em qualquer ponto ao longo da tubulação do circuito, é possível que nós verifiquemos diferentes velocidades (V) ao longo do circuito do fluxo, bastando que, para isso, a área da seção (A) da tubulação empregada varie em algum ponto ao longo dele.

Neste caso, o fluxo advindo pela tubulação de área de seção maior, ao entrar na tubulação de área de seção menor, terá sua velocidade aumentada. Porém, se velocidade aumenta e a pressão cai. Sempre que houver um fluxo por um orifício a pressão irá cair. Esta afirmação é de suma importância para entender, por exemplo, como as válvulas pilotadas funcionam.

Da mesma forma, a corrente elétrica expressa Q/Δt, só que, no caso, com unidade de medida C/s (Coulomb por segundo), que significa,a mesma coisa que A (Ampère). Precisou-se adotar a unidade de medida Coulomb, que nada mais é que uma pré-definida determinada quantia enorme de elétrons, por que a intensidade da carga elétrica de um único elétron é muito pequena para ser tomada em consideração, na grande maioria dos casos práticos, sendo 1 Coulomb = 6,28 X 1018 elétrons.

Convém, ainda, que a um circuito elétrico agreguemos um interruptor elétrico (que equivale à válvula de bloqueio, em hidráulica), a fim de poder comandar o circuito, ligando e desligando o caminho da passagem da corrente.

Imagem emprestada do site http://www.saladaeletrica.com.br/
Assim como em hidráulica, a Potência Hidráulica é igual a Pressão multiplicada pela Vazão, em elétrica, a Potência Elétrica é a Tensão multiplicada pela Corrente.

Já, quando a Potência (seja hidráulica ou elétrica) é multiplicada pelo Tempo, resulta em Energia (ou Trabalho), hidráulica ou elétrica, respectivamente.

Isso nos revela um fato importante para a aplicação dos Micro Hidrogeradores de Energia Elétrica Residenciais: a água que provém da rede de distribuição, ao chegar ao terminal que abastece um determinado reservatório residencial (a nossa caixa d'água, por exemplo), haja vista que ai existe presente ambas, tanto pressão quanto vazão, isso significa, evidentemente, que ela contém em si, potência hidráulica e, enquanto transcorre o tempo em que o abastecimento d'água esteja ocorrendo continuamente (com pressão e vazão, ambas presentes), isso significa que estamos recebendo, não somente o produto Água mas, também, o produto Energia Hidráulica, a qual podemos converter na equivalente energia elétrica:


A unidade de medida de energia watt-hora corresponde à energia transformada quando um dispositivo cuja potência seja de 1 Watt operando durante um intervalo de tempo de 1 hora.

Isto é fato e, assim estando cientes, podemos imaginar que, com emprego de conversores de energia adequados, quase todos eles produtos disponíveis comercialmente e, em portes bastante variados, atendendo a um enorme gama de aplicações, uma forma de energia pode ser, facilmente, convertida para outra forma de energia e, assim, a partir do fluxo de água que nos abastece, e que nós já estamos pagando, podemos, de fato, obter eletricidade

Podemos definir como uma das principais vantagens da ideia do emprego de Micro Hidro Geração, o fato de que ela pode ser feita mesmo a partir de uma pequena quantidade de fluxo (alguns alegam que tão pouco como dois litros e ½ por minuto), ou de uma queda de desnível altimétrico pequeno (alguns alegam que tão baixa quanto uns 80 cm) para gerar eletricidade com emprego de um micro hidrogerador, de modo custo-benefício compensatório. (Será mesmo?) 

Ainda há, atualmente, alegações de que a eletricidade produzida pode ser tanto consumida no local em que está sendo gerada, quanto transmitida a, digamos, 1 km quilômetro de distância do local. (Será, mesmo?). Lembre-se que um dos problemas mais importantes relacionado, por exemplo, com a energia eólica, é o da intermitência e a variabilidade do vento. Acaso, não é exatamente assim, também, que funciona o fluxo d'água que aflui para dentro de nossas caixas d'água?

Será que uma armazenagem intermediária da energia elétrica produzida pode ser realizada? No que os Veículos Elétricos (VEs), com suas enormes baterias embarcadas, podem contribuir com isso? Há necessidade de se implementar algum tipo de controle para esse processo de conversão de energia? Como isso pode ser feito? Já existe algo pronto neste sentido? É justamente sobre estes e outros detalhes que eu pretendo falar, e avaliar com o devido cuidado e atenção, na próxima postagem sobre este assunto.

Apenas para tomarmos fôlego, refletindo, antecipadamente, vale lembrar que, no vai e vem das visões e revisões de estudo da Física, o ser humano nunca conseguiu escapar da comparação (e equiparação) entre matéria (e sua massa) e energia e, um dos princípios mais antigos observados, foi expresso na Lei de Lavoisier, enunciada pela célebre frase: "Na Natureza nada se cria e nada se perde, tudo se transforma".

Apesar deste enunciado ter sido elaborado no âmbito das reações químicas, como Lei de Conservação das Massas, evidentemente que ele serviu, também, de guia para que o homem prosseguisse em seu caminho para o estabelecimento Lei da conservação da energia, que há tempos anteriores já vinha sendo, também buscada (eu menciono apenas Lavoisier, todavia, como um tributo a dúzias de outros pesquisadores científicos que participaram, igualmente, dessa grande empreitada da humanidade, cuja lista e detalhes de trabalhos não caberia aqui).

Deve-se ter em mente que energia compreende várias visões com seus conceitos específicos, mas que se relacionam e interagem entre si, como energia potencial, cinética, térmica, etc. Em física, a Lei ou Princípio da Conservação de Energia estabelece que a quantidade total de energia em um sistema isolado permanece constante. Tal princípio está intimamente ligado com a própria definição da energia. Um modo informal de enunciar essa lei é dizer que energia não pode ser criada nem destruída, a energia pode apenas transformar-se (ser convertida de um tipo para outro).

Ao aplicarmos Micro Hidro Geração, em algum ponto a partir do fluxo de água que nos abastece, é exatamente com esses princípios que lidaremos, e por eles seremos limitados. Produzir e consumir (ou armazenar) eletricidade a partir de um fluxo (ou de uma queda) d'água (hidro geração), implica que estaremos diminuindo a energia daquele fluxo (ou queda), na mesma medida em que a convertemos para eletricidade útil, seja com consumo imediato  da corrente elétrica ou com ela alimentando uma dispositivo de pré-armazenagem (bateria).

Isso significa dizer que, ao introduzirmos o conversor (micro hidrogerador), a um circuito pré-existente, a energia do fluxo d'água não será mais a mesma de antes, pois, como ele atua como um elemento resistivo, há diminuição da pressão imediatamente após ele e, também diminuição quanto a vazão do circuito hidráulico, que será dempre menor do que antes de introduzir o micro hidrogerador.

Ao longo do tempo que estivermos efetivamente consumindo (ou armazenando) a eletricidade convertida, o produto pressão, vazão e tempo, que é a energia hidráulica do fluxo, se reduz, podendo ocorrer, inclusive, de extrairmos tanta energia do fluxo d'água (quanto maior a energia elétrica efetivamente produzida pelo micro hidrogerador, maior será o Torque de Frenagem desenvolvido sobre o seu eixo de seu rotor, que luta contra o fluxo d'água), que podemos acabar causando a sua obstrução demasiada do fluxo, comprometendo o abastecimento de água. Note que, mesmo que não estejamos consumindo energia alguma proveniente da eletricidade disponível na saída do micro hidrogerador, só dele estar presente no sistema, já temos alguma pequena perda de energia do fluxo.

Além do mais, todo processo de conversão de energia, na prática, é imperfeito, e isso incide em mais perdas inerentes ao processo de conversão. Isso significa dizer que nem toda a energia tomada do fluxo d'água conseguiremos transformar em energia elétrica, parte dela é perdida no processo eletromagnético interno à maquina elétrica do micro hidrogerador, que por mais eficiente que seja, não atinge um rendimento de 100% na conversão. Assim, vamos precisar fazer uma série avaliações bem apuradas sobre estas questões, para verificarmos a real viabilidade da implementação dessa ideia, quer gostemos dos resultados a que chegarmos, quer não.

Notas:


  1. A norma estabelece o limite de atendimento até o teto do segundo pavimento em sintonia com as normas de abastecimento de água predial, que indicam a necessidade de que as residências possuam reservas próprias, as caixas d'água, o que não é usual em outros países que trabalham com a rede sob mais altas pressões. Assim, as caixas d'água residenciais, de certa forma, fazem parte do sistema de regularização do abastecimento urbano. A existência de caixa d'água, entretanto, acarreta às empresas de saneamento uma quantidade esperada de perda de água em função da submedição dos hidrômetros. Isso porque, nesses casos, em alguns horários, a vazão que passa pelo medidor é menor que a mínima verificada pelo aparelho. Isto ocorre quando as torneiras de boia estão próximas ao fechamento. Há indicações de que esse valor perdido nunca é inferior a 10% do volume consumido pela unidade dotada de caixa com torneira de boia (cf. Heller, 2006: 803).

  1. As recomendações com relação à pressão máxima tomaram-se usuais a partir de normas relativamente recentes (a partir de 1994), ao mesmo tempo em que era desenvolvido nas empresas de saneamento e no setor maior ênfase na gestão do controle de perdas (em função da relação entre pressão e volume perdido em vazamentos). Na produção de redes de distribuição da Sabesp para a RMSP, por exemplo, até meados da década de 1990, o critério da pressão máxima não era respeitado, e foram implantados muitos reservatórios e torres elevadas que forneciam pressão acima da máxima.

quarta-feira, 25 de julho de 2012

Baterias de Íons de Lítio – Tecnologias e Bases de Custos (Parte 3/3)

Nota: Esta postagem é uma continuação (terceira e última parte) de um conjunto de postagens iniciadas anteriormente neste blog, todas sob o título “Baterias de Íons de Lítio – Tecnologias e Bases de Custos”, a qual trata-se de uma tradução, adaptada e comentada, de um relatório de mesmo título (em inglês) do “The Boston Consulting Group”. Para um bom entendimento de algumas partes aqui contidas, pode ser necessário referir-se às postagens anteriores.

Custos da Infraestrutura para Carregamento:

A Infraestrutura de Carregamento é outro componente importante dos custos operacionais dos veículos elétricos. Estima-se que o custo total da infraestrutura de carregamento instalado até 2020 será de aproximadamente US$ 20 bilhões: cerca de 40 por cento nos Estados Unidos, 30% em Europa, e 30% no resto do mundo. Cerca de 60% (US$ 12 bilhões) deste custo será para financiar a criação e apoio de infraestrutura de carregamento público, que terá de ser financiado (pelo menos inicialmente) por governos, empresas de energia, ou contratados privados.

O quantidade de estações necessárias por número de veículos e o custo de construção de cada uma são frequentemente citados como os principais determinantes do custo total da infraestrutura de carregamento, no entanto, deve-se considerar que os perfis de carga e diversificação dos veículo são também essenciais para o cálculo. Por exemplo, os proprietários de veículos nos Estados Unidos e Japão são mais propensos do que os proprietários na Europa para ter acesso às estações mais baratas de carregamento doméstico. Além disso, os proprietários nos Estados Unidos são mais propensos que os europeus para comprar veículos de alcance estendido (ou seja, os híbridos série) pois, esses veículos podem operar por mais tempo antes de recarregar, exigindo, portanto, menos estações de carregamento do que veículos elétricos puros e, portanto, implicando em menores custos de infraestrutura.

Estima-se que o aumento total da demanda por eletricidade criada por todos os VEs em 2020 para menos de 1 por cento. Apenas este aumento não é provável que requeira uma capacidade de geração adicional de energia a curto prazo. No entanto, mesmo que as vendas de veículos elétricos estabilize em um patamar de apenas 3% a 5% da quota de mercado global, o número de veículos elétricos na estrada entre 2020 e 2030 elevaria a demanda por eletricidade em até 1% / ano. Em resposta, talvez seja necessário que as empresas de energia aumentem a capacidade de oferta de energia. No curto prazo, os serviços públicos locais podem ter que atualizar alguns segmentos da rede para lidar com uma carga maior em áreas onde um grande número de veículos elétricos são frequentemente carregados.

Sobre temas que envolvem carregamento de VEs e o sistema elétrico, vários tópicos já foram postados aqui mesmo neste mesmo blog, orientando para a seguinte linha de recomendação:


Carregamento Doméstico de VE:

Quem decidir apostar no carro elétrico puro, muito provavelmente se sentirá mais a vontade na medida que possa optar por possuir um Equipamento de Carregamento da bateria do VE para uso doméstico, sendo este de capacidade adequada, instalado em sua própria garagem. O Brasil terá a oportunidade de começar, desde cedo, padronizado no que tange ao carregamento doméstico, que é feito por meio de um conector elétrico normalizado, de última geração, denominado SAE J1772, e com as estações podendo fornecer corrente elétrica da ordem de 30A, ou melhor ainda, de 50A, ou ainda mais, havendo possibilidade técnica.

Uma corrente disponível para carregamento mais elevada, tem a finalidade de prover um tempo de carregamento satisfatoriamente reduzido. Quanto mais avançarmos no futuro próximo, mais esse atributo será proveitoso e gratificante para o usuário de VEs. As estações de carregamento são simples, por fornecerem simplesmente a mesma CA (Corrente Alternada) da rede elétrica, têm bem poucas peças, mas algumas peças são bem caras, como o próprio Conector SAE J1772, que não sai por menos de R$ 300 !!! (isso, se for das mãos dos chineses, que é mais barato). Assim, elas deverão custar, prontas e instalada, algo entre R$1200 e RS1700 cada uma, preço estimado para o período entre 2013 e 2020.

Para que estas estações de carregamento possam ser instaladas nas residências, muito provavelmente, elas deverão exigir a necessidade de alguma reforma nas instalações elétricas do imóvel, como por exemplo:
  • Obrigatoriedade da Proteção por Aterramento (presença do condutor PEN ou PE é necessária, não apenas por razões de segurança, mas também por motivos funcionais);
  • Redimensionamento da seção dos cabos condutores carregados (fase 1 e fase 2, em 220V) para suportar a corrente de trabalho nominal do carregamento (recomendável 50A);
  • Proteção das pessoas contra choques elétricos por emprego de Interruptor DR (exigido na norma NBR 5410/2004), necessária no novo circuito desta Tomada de Uso Específico (ou, ao menos, na proteção geral);
  • Provisão de um Ponto de Tomada de Uso Específico adequada (seja na garagem ou outro local onde se fará o carregamento).
Esta pequena reforma da instalação elétrica demandará um investimentos extra, que poderá variar de R$200 a R$700, já incluindo mão de obra, de modo que o custo total de propriedade de uma Estação de Carregamento Doméstica será algo em torno de de R$1400 a R$2400, para se poder passar a carregar um VE em casa, com comodidade, de modo satisfatório, seguro e dentro das normas.

Todos os imóveis residenciais nos quais foram realizadas mudanças de Chuveiro Elétrico para Aquecimento a Gás Natural, poderão vir a gastar menos na parte do investimento relativo à reforma da instalação elétrica pois, de modo antecipado, muito provavelmente, o seu Quadro de Distribuição de Circuitos já conterá um circuito elétrico em disponibilidade (o do antigo chuveiro elétrico), que poderá ser devidamente adaptado para uso de ligação de uma Estação de Carregamento de VE nível 2.


Outra coisa é que, muito mais importante que investir em aumento de oferta de energia elétrica, até porque a previsão de acréscimo de demanda não parece requerer um incremento capacidade de geração de energia a curto ou médio prazo, as concessionárias de energia elétrica deverão, sim, investir em campanhas orientativas, a fim de que os usuários de VEs façam o carregamento de seus carros no período das 0hs as 7hs, não tão somente para evitar os piores horários de pico mas, consumindo energia da rede elétrica  apenas no período de mais baixa demanda, provendo uma ótima distribuição da demanda ao longo do dia.

Importa lembar ainda que, para isso, o carregamento pode ser, de modo trivial, programado pelo painel de um VE, para iniciar automaticamente, e findará também de modo automático, sem que seja necessário qualquer outra intervenção por parte do usuário.

Antecipando-se as futuras elevações da potência do carregador embarcado e da capacidade de energia das baterias dos VEs, é recomendável que os usuários de VEs optem por estações de carregamento doméstico de correntes mais elevadas (50A). 

Fique esperto também para outro detalhe: por causa das recentes normalizações dos conectores, alguns fabricantes de estações de recarga para VE acabaram ficando com algum estoque de produtos e de componentes que se tornaram, repentinamente, obsoletos e sem outra aplicação,. Infelizmente, e flagrei que estão tentando empurrar tais produtos ao mercado brasileiro sem se preocupar em retrabalha-los antes. Aceitando isso, você além de pagar um custo inicial caro pelo aparelho, descobrirá, posteriormente, que tem que gastar outro tanto adquirindo cabos adaptadores. Não vou citar marcas, mas se uma estação de carregamento contiver cabo com conector IEC-62196, para nível (modo) 2, não compre pois, já é produto obsoleto.

Carregamento Público / Coletivo / Comercial de VE:

Obviamente que, paralelamente ao carregamento doméstico, espera-se que o governo lidere e mobilize as ações necessárias para implantação de redes públicas comerciais de abastecimento rápido e que as concessionárias de energia provejam regras e tecnologias, tais como, por exemplo, a tecnologia de armazenamento intermediário, para locais onde se encontrem instaladas múltiplas estações de carregamento rápido, desenvolvida pela Itaipu Binacional.

O carregamento públicos comerciais são caracterizados por um tempo de carregamento muito menor que o doméstico (de 10 a 30 min.) e por fornecerem tensão já convertida para CC (corrente contínua) para o carregamento da bateria do EV. 

Neste tipo de equipamento (nível 3) também houve uma recente padronização do conetor, com assinatura de acordo entre oito montadoras a Ford, a General Motors e Chrysler e todas as cinco grandes alemãs, a Audi, a BMW, a Daimler, a Porsche e a Volkswagen.

O bom dessa padronização é que ela fortalece ainda mais a padronização que já existia do carregamento doméstico pois, o novo conector adotado deriva mecanicamente e, mantem compatibilidade elétrica com SAE J1772 (na verdade ele integra o SAE J1772). Este conector permite integrar, de fato, todos os tipos de carregamento, tanto público quanto doméstico. 


A sua aprovação foi uma derrota para os japoneses, que vinham apostando tudo no seu padrão CHAdeMO (em março de 2010, a Toyota, a Nissan, a Mitsubishi, a Fuji Heavy Industries e a Tokyo Electric Power concordaram em utilizar este padrão para a recarga dos VEs). Os japoneses vêm fabricando EVs e afins com dois conectores distintos: CHAdeMO e SAE J1772: é o preço do pioneirismo.

O novo conector aprovado por americanos e europeus, por enquanto conhecido apenas por "COMBO", permite um sistema de conexão que integra quatro opções de carregamento:
  • CA Monofásico (tipicamente doméstico, pelo padrão SAE J1772, usa apenas a parte superior do conector Combo);
  • CA Trifásico Rápido (os VEs precisarão vir a ter carregadores embarcados adequados diferentes, superiores aos que eles têm atualmente, para que isso venha a fazer sentido!!);
  • CC Rápido Para Uso Doméstico (para quem tiver cacife para isso pois, vai custar bem mais caro que os valores que eu apregoei acima);
  • CC Ultra Rápido (carregamento em estações públicas em uma entrada ou postos comerciais em cidades, de 10 a 30 minutos em carga, é aqui que esta confrontando com o CHAdeMO).

Todavia, de fato, parece a padronização pode não significar, ainda, o fim das disputas pois, de acordo com Wahid Nawabi, gerente geral da Aerovironment, a discussão sobre qual padrão a ser adotado está voltada diretamente para o consumidor: "Acredito que um padrão único, em que todos possam concordar, é positivo para a indústria. Se optarem pelo CHadeMO, Combo ou algum outro, para mim, não haverá diferença. Hoje, o padrão que faz mais sentido para o consumidor é o CHAdeMO porque, atualmente, os carros que estão sendo fabricados utilizam este padrão. Então, qual deveria ser o modelo a ser adotado? Você pode argumentar qual é o melhor, tenho certeza. Mas, o que é melhor para você: uma maçã ou uma laranja? Se você está com fome, você precisa de alimento." (k kk k kkk k kk k k, faz todo sentido!)

Para Pietro Erber, Diretor Presidente da Associação Brasileira do Veículo Elétrico (ABVE), convém verificar se os fabricantes asiáticos, particularmente aqueles que já fabricam ou vão fabricar seus carros no Brasil podem adotar, no Brasil, o sistema previsto para os EUA e Europa. Será problemático adotar um sistema que prejudique sua participação no mercado brasileiro, particularmente como produtores. Por outro lado, também convém verificar se entre os fabricantes japoneses mencionados e os demais fabricantes asiáticos já há acordo quanto à tecnologia a ser adotada. O que não está claro é como os japoneses vão vender seus carros nos EUA e Europa com um sistema que não seja compatível com o sistema de recarga adotado por esses países.

Custo Total de Propriedade:

No curto e médio prazo, tanto o movimento dos entusiastas, quanto os créditos governamentais tendem a impulsionar a demanda por veículos elétricos na área dos países estudados.

No entanto, em 2020, o mercado de massa de compradores de carros já terão passado a um estágio mais racional e competitivo e a considerarão o perfil do Custo Total de Propriedade dos VEs, em contraponto com o dos veículos de combustão interna, ao fazer suas decisões de compra.

O Conceito de Custo Total de Propriedade (TCO – Total Cost Ownership) foi definido e explicado na primeira parte desta dissertação.

http://automoveiseletricos.blogspot.com.br/2012/07/baterias-de-ions-de-litio-tecnologias-e.html )

Esses consumidores pesarão a economia dos veículos elétricos (gerada por custos operacionais mais baixos em relação à gasolina) contra o aumento dos preços iniciais de compra, que ainda existirão em 2020.

Além disso, o balanceamento do Custo Total de Propriedade é uma função também dos custos operacionais, tais como o preço dos combustíveis, o custo relativo de manutenção, e os padrões de condução dos indivíduos, bem como por incentivos governamentais para as aquisições e os regimes de impostos locais.

Se os incentivos de compra do governo continuarem até e para além de 2020, isto irá influenciar diretamente, sem dúvida, o balanceamento do Custo Total de Propriedade que existirá naquele momento. No entanto, os incentivos governamentais atuais e planejadas foram definidas como medidas temporárias e, portanto, não devem ser incluídos em um cálculo de equilíbrio verdadeiro do estado do Custo Total de Propriedade futuro.

O Custo Total de Propriedade para os VEs é mais favorável em regiões onde os preços da gasolina são relativamente mais elevados do que os preços tanto do o do óleo (por causa dos impostos locais), quanto da eletricidade, e onde os potenciais proprietários dirigem distâncias relativamente mais longas a cada ano.


Por exemplo, os potenciais proprietários de um veículo de porte médio na União Europeia, onde os preços da gasolina estão altos por causa da tributação, e onde quilometragem rodada anual é moderadamente elevada, são mais propensos a comprar a economia de um VE do que os condutores em outros mercados, como Japão, onde as pessoas costumam dirigir menos e a eletricidade é relativamente cara.

O prazo para equilíbrio entre vantagens e desvantagem sobre Custo Total de Propriedade dos VEs no mercado dos EUA, está numa situação intermediária entre a da Europa e a do Japão, enquanto o custo relativamente baixo da gasolina faz com que alternativas sobre o motor a explosão sejam mais atraente nos Estados Unidos do que em outros lugares, porém, os consumidores americanos dirigem mais milhas por ano (aproximadamente 14.000) do que os condutores em outros grandes mercados, acelerando o retorno sobre um veículo elétrico.

A maioria dos países têm adotado programas de incentivo para estimular a demanda por veículos elétricos. Esses programas atualmente tem recursos limitados, pois eles variam de cerca de US$ 3.000 por carro comprado na China para cerca de US $ 7.500 por carro comprado na França, Alemanha, Reino Unido e Estados Unidos.

Certos programas japoneses oferecem até US$ 10.000 em incentivos para VEs. Se estes programas de incentivo continuarem existindo até 2020, a período necessário para se atingir de equilíbrio do Custo total de Propriedade entre um VE e um veículo com motor a combustão interna, nas nações ocidentais desenvolvidas (foco do estudo e análise do BCG), cairá de entre 9 a 15 anos para entre 1 a 5 anos. (Veja o Quadro anterior).

Dada a economia e as tecnologias esperados associadas as bateria, perfil do equilíbrio do custo total de propriedade nos EUA dependerá dos preços do petróleo, do gás e dos incentivos governamentais. Uma série de pesquisas de mercado sugerem que os compradores realmente esperam poder equilibrar com o preço de compra mais elevado dos VEs em dois ou três anos, por meio dos custos operacionais, que são mais baixos para estes veículos.

De acordo com a análise bastante conservadora do The Boston Consulting Group, a fim de que os compradores norte-americanos de VEs possam vir a equilibrar em três anos em 2020, o mercado teria de cumprir qualquer uma das seguintes três condições hipotéticas na íntegra ou então alguma combinação delas, em menor grau:
  • Um preço do petróleo em elevação, passando de de US$ 100 por barril para US$ 300 por barril;
  • Um aumento de 200% nos preços da gasolina causado pela subida dos preços do petróleo, impostos mais altos, ou ambos, ou;
  • 7.500 dólares em incentivos governamentais disponíveis por carro comprado, de acordo com incentivos para veículos elétricos atualmente aprovados.
Na visão do BCG, embora seja improvável que qualquer um destes fatores, por si só, venha permitir que os compradores equilibrem custos em três anos, é possível que alguma combinação destes e afins possam contribuir para prover tal período de equilíbrio. Por exemplo, medidas como taxas de carbono e impostos de congestionamento já estão em vigor nos mercados europeus, não seria irrealista pensar que eles poderiam ser adotadas também nos Estados Unidos, reduzindo assim a necessidade de incentivos sustentadas.

Até 2010, o governo federal brasileiro tinha uma comissão para tratar de um provável o programa para o VE, ligada à Secretaria de Política Econômica do Ministério da Fazenda. Mas o fórum não está mais ativo. Enquanto o governo brasileiro simplesmente se resigna, na Anfavea também não há nenhum grupo de trabalho com esse objetivo.

Vale a pena ao consumidor brasileiro pagar mais de R$ 150 mil por um compacto que nem é de luxo? Obviamente que não e as montadoras multinacionais sabem disso. Alias, o consumidor médio brasileiro nem teria como cogitar pagar tal valor. Por isso as montadoras, não lançaram ainda esses modelos no país. “Faltam dois passos básicos: regulamentação de tributos e incentivos”.

No modelo elétrico incide a mais alta carga tributária dos automóveis vendidos no Brasil. O maior dos impostos é o IPI, de 25%, cobrado em modelos de luxo e na categoria “outros” (que abrange os VEs).

Como esses carros são feitos fora do país, há ainda o Imposto de Importação de 35%. Com isso, o Leaf, da Nissan chega aos surreais R$ 190 mil. O valor razoável para atrair demanda seria algo em torno de R$ 60 mil. Na Califórnia, graças a incentivos do governo, o Leaf é vendido por menos de US$ 25 mil.

Fontes do setor confirmam que não há consenso, sobre o tema, entre as montadoras, e isso é óbvio pois, a competição a nível mundial está mais acirrada do que nunca e isso é natural diante das tensas e elevadas apostas exigidas por essa nova oportunidade. O Brasil tem potencial de Lítio e uma fábrica de baterias de íons de Lítio nacional surpreenderia o mundo e nos colocaria em posição de respeito competitivo. Salvo algumas expressões de boas intenções observadas, eu confesso que é difícil a mim acreditar que, de fato, iremos além.

E enquanto que a única fonte de alguma atividade sobre VEs é a Associação Brasileira do Veículo Elétrico (ABVE), o Brasil parece, mais uma vez, disposto a esperar o trem passar, deitado em berço esplêndido, até que algum grande fabricante internacional, algum dia, traga de boa vontade alguma unidade produtora de VEs para cá. Mas sem tradição em fontes próprias de suprimento dos componentes chaves (tais como as baterias de íons de Lítio, os inversores de frequência multinível, os componentes desses e outros), isso ainda deverá demorar bastante, se acontecer.

Não estou aqui sugerindo que ninguém deva tentar fazer o papel de ninguém no contexto do processo produziria a inovação relativa as tecnologias e a economia dos VEs no Brasil, até mesmo porque, eu creio que a coisa só funcionaria, se todos os cinco campos de força que impulsionam uma inovação, fizesse, cada qual, a sua parte.

Olhando para a Dinâmica da Indústria:

Concurso para participação no mercado de baterias de VEs, estimado em 25 bilhões de dólares em 2020 já está em andamento em toda a cadeia de valor da indústria. A rivalidade está, particularmente, interessada na área de fabricação de células, o que reflete a importância crítica de células para o desempenho geral da bateria. No médio e longo prazo, os produtores de células irão desempenhar um papel crucial na definição do equilíbrio de poder - e na maneira como as receitas serão compartilhadas.

A questão chave é, com quem irão os produtores de células unir forças? Dois cenários para a formação de times são possíveis para significativas alianças estratégicas na indústria: em um deles, as montadoras é que forjarão novas alianças com fabricantes de células, e um outro em que se mantem a tradição através da compra de baterias de fornecedores integradores, que, por sua vez, podem forjar suas próprias alianças com os fabricantes de células. (Ver Quadro a seguir).

Forjando novas alianças:

Algumas montadoras já estabeleceram fortes ligações com os fabricantes de células através de alianças ou de participação acionária. Exemplos são a da Toyota com a Panasonic no Japão e da Daimler com a Li-Tec na Alemanha. Tais relações e o acesso exclusivo OEM para o know-how, tecnologia e capacidade de produção da fabricante de células, permite que as montadoras tornem seus veículos diferenciados, em termos de uma tecnologia de bateria escolhida.

No entanto, as relações desse tipo podem limitar a capacidade de uma montadora para reagir rapidamente aos avanços tecnológicos alcançados pelos outros fabricantes de células. Além disso, a exclusividade pode limitar os efeitos de escala e atrasar reduções de custo que sejam resultantes da produção.


Rompendo com a Tradição:

Alguns fornecedores de integração, também, estão se unindo diretamente com os fabricantes de células. Exemplos incluem acordo como o da Johnson Controls com a Saft Batteries nos Estados Unidos e na Europa (parceria já encerrada em Setembro/2011), e o caso da SB LiMotive, que nasceu de uma joint venture entre a Samsung (Coreia Sul) e Bosch (Alemanha).

Relações deste tipo permitem fornecedores de integração aplicar integração automotiva expertise para o negócio de baterias e aos fabricantes de células acesso a uma série de montadoras através de relações estabelecidas.

Para montadoras, este modelo produz menos controle e menos conhecimento detalhado da tecnologia da bateria, mas que lhes permite beneficiar-se dos efeitos de escala alavancando uma base de fornecimento OEM transversal.

Também reduz os seus custos iniciais e os custo potenciais de te que mudar para uma tecnologia alternativa, em caso de uma emergência. Este cenário será de grande benefício para as montadoras, se os padrões de nível de pacote emergirem de forma a permitir flexibilidade na tecnologia das baterias.

Olhando para 2020:

Uma questão chave que vai determinar a evolução da indústria, de acordo com um ou ambos os cenários descritos acima é como as montadoras irão trocar o controle sobre a diferenciação de tecnologia contra a escala e flexibilidade no curto e médio prazo. No curto prazo, espera-se um predomínio de alianças entre as montadoras e os fabricantes de células, enquanto as montadoras continuam a aprender sobre a tecnologia subjacente e tentam garantir uma vantagem competitiva, no início, rapidamente, trazendo soluções exclusivas para o mercado.

Como a tecnologia amadurece e as baterias gradualmente irão se tornar commodities, no entanto, as margens irão cair e a escala será cada vez mais importante, mudando a ênfase das relações mais tradicionais entre os fabricantes de células, integradores e montadoras.

Implicações e Questões para Participantes da Indústria:

Além das montadoras, fabricantes de célula de bateria e de fornecedores de integração, o negócio de baterias de carro elétrico inclui jogadores que são novos para a indústria automotiva. Em um extremo da cadeia de valor estão as empresas químicas e produtoras de componentes das baterias: na outra ponta são os operadores de mobilidade, como Zipcar (que opera um negócio de “partilha de automóveis”, uma alternativa para o aluguel ou posse de carro), e as companhias de energia.

Todos estão enfrentando duros desafios, trabalhando para definir e fixar posições sólidas na cadeia de valor, e todos serão afetados pelo grau em que os governos tomem medidas para estimular o investimento e a demanda. As montadoras enfrentam uma decisão urgente, à luz da atual crise financeira e dos recursos severamente limitados: como alocar seus investimentos em novas tecnologias.

Para responder a esta pergunta. As montadoras devem desenvolver rapidamente know-how de baterias. Vemos isso acontecendo principalmente através de parcerias com fabricantes de células, integradores e empresas de energia.

A medida que as montadoras aprendem, eles estão também se protegendo para evitar ficar travado com fornecedores tecnologicamente ou financeiramente mais desfavorecidos. As montadoras devem considerar as seguintes perguntas:

Qual é a equilíbrio adequado entre a aprendizagem e a gestão de riscos? Este equilíbrio se deslocará a medida que as tecnologias das baterias amadurecem e, em caso afirmativo, quais os principais indicadores que podem existir? Como é que um VE pode ser diferenciado de outros, a medida que a tecnologia amadurece? Quais são as metas de investimento adequados e os horizontes e estão os de nossa empresa alinhados com o das outras empresas do setor? Quanto, a parceria com outras montadoras, irá prover de partilha de risco adequada? O que precisamos dos outros, ao longo da cadeia de valor para o nosso caso de negócio ter sucesso?

Os fabricantes de células enfrentam uma pressão grande e uma tremenda oportunidade. A diversidade de produtos é susceptível de dar lugar a uma reestruturação tecnológica e de custos no curto e no médio prazo, a medida que jogadores com tecnologias superiores ganham contratos e aumentam volumes de produção para diminuir os preços. Espera-se que esses vencedores, ou superem ou adquiram jogadores menores, levando a consolidação da indústria.

Fabricantes de células devem considerar as seguintes questões: O que diferencia a nossa tecnologia para a montadora e para o cliente? Como é que vamos permanecer competitivos em custos a medida que a indústria amadurece? Existem tecnologias competitivas que são complementares à nossa e, em caso afirmativo, como podemos integrá-las? Que suposições sobre o tamanho do mercado deve impulsionar os investimentos?

Os fornecedores de integração estão trabalhando para reter seu papel como um integradores para as montadoras a medida em que as prioridades do setor e os centros de custo convergem em direção às baterias. Eles devem considerar as seguintes perguntas: Qual a melhor maneira se tornar especialistas em tecnologia de bateria? Qual o valor que podemos agregar em favor das montadoras? Como podemos conduzir escala a medida que a indústria cresce? Nós temos competências essenciais que a cadeia de fornecimento dos VEs pode aproveitar?

As montadoras devem rapidamente desenvolver Know-how das bateria, através de parcerias com outras partes interessadas da indústria.

As empresas químicas e produtores de componentes tendem a ver o negócio do VE como representando apenas uma pequena porcentagem de suas receitas globais. Eles acabarão por fornecer materiais ativos, separadores, e outras peças-chave para a fabricação de células, e provavelmente vão preferir usar os fabricantes de células como intermediários, a fim de proteger as suas margens de controle por parte das montadoras e fornecedores de integração. Estes jogadores devem considerar as seguintes questões: Quanto investimento em novos componentes específicos para VEs é adequado? O que é melhor caminho para maximizar os lucros: uma parceria com um único fabricante célula ou vender produtos no mercado livre? Qual deve ser nossa a nossa estratégia de comercialização de novos materiais e componentes para veículos elétricos?

Já, por sua vez, os Operadores de Mobilidade e as companhias de energia estão definindo novos modelos de negócios com base no uso do carro, ao invés de posse do mesmo. Eles podem desempenhar um papel favorável na questão da penetração de mercado dos VEs, reduzindo os custos iniciais dos clientes ou oferecendo soluções para as limitações dos VEs, tais como a sua autonomia limitada e o longo tempo de recarga. Estes jogadores devem considerar as seguintes questões:

O caso da empresa provedora de utilitário reforçam ou degradam a medida que a tecnologia da bateria melhora e os custos declinam? Quão robusta são as diversas opções em potencial de reutilização da bateria? Existem determinados locais ou segmentos de veículos em que um modelo de reutilização serão especialmente atraente? O modelo de negócio mais atraente para a organização que é operar sozinha ou em parceria?

Os governos começaram a assumir a responsabilidade por garantir que as empresas dominem as tecnologia do carro elétrico e de bateria e produzam grandes volumes, suficientes para reduzir os custos. Estes dois passos são essenciais para a viabilidade a longo prazo da indústria, que, por sua vez, é um dos caminhos chave para a redução da dependência em óleo.

Dadas as fortes forças incentivadoras de interesse público e privado, esperamos que haverá apoio governamental suficiente para permitir a indústria a alcançar tanto a maturidade tecnológica quanto a viabilidade de custos. Alcançando esses duas metas industriais, isso irá levar os VEs e os carros de longo alcance (híbridos série) a atingir a quota de 3% a 5% de participação no mercado de automóveis de passageiros nos países desenvolvidos.

O crescimento contínuo do mercado de VEs vai depender de novas tecnologias de baterias e da vontade dos governos, bem como dos padrões de mobilidade e de fatores macroeconômicos, como o preço da gasolina. Os reguladores podem decidir permitir a economia pura (e as necessidades ambientais) a impulsionar o mercado, limitando assim a participação dos VEs, ou eles podem continuar a apoiar o desenvolvimento do mercado, a implementação de subsídios fiscais sustentados e de normas mais estritas para transferir o custo da tecnologia para o consumidor. As decisões desta alçada terá uma influência significativa no mercado de desenvolvimento para além de 2020, nomeadamente sobre o montante do apoio financeiro necessário.

Os Governos devem considerar as seguintes perguntas: Quais são as nossas metas de investimento e horizontes? Devemos apostar em tecnologias específicas ou em partes da cadeia de valor? Como e quando podemos melhor implantar incentivos para impulsionar a demanda de consumo? Como devemos balancear a economia de consumo de créditos para VEs com impostos sobre o veículos de motor a combustão?

O negócios envolvendo os VEs as baterias de íons de Lítio manterão uma promessa de formação de grandes lucros potenciais para ambos, tanto os operadores históricos, quanto os novos jogadores, no entanto, investir nessas tecnologias envolve riscos substanciais. Não está claro as montadoras e os fabricantes de baterias tradicionais ou se novos operadores irão emergir como vencedores, a medida que a indústria amadurece.

Tal como está hoje, o palco está montado para um abalo entre os vários tipos de baterias, tecnologias de tração, modelos de negócios, e até mesmo regiões. Montadoras, fornecedores, empresas de energia e os governos terão de trabalhar juntos para criar as condições adequadas para um grande mercado de VEs viável surgir. As apostas estão altas. Façam as suas!


Outras postagens correlacionadas:

Bateria de Veículos Elétricos (Nissan LEAF)



Licença Creative Commons
Este trabalho de André Luis Lenz, foi licenciado com uma Licença Creative Commons - Atribuição - NãoComercial - CompartilhaIgual 3.0 Não Adaptada.