Mostrando postagens com marcador inversor. Mostrar todas as postagens
Mostrando postagens com marcador inversor. Mostrar todas as postagens

sexta-feira, 23 de maio de 2014

Toyota e Denso Desenvolvem um Novo Semicondutor de Potência SiC

O novo semicondutor ou, de forma mais específica, o novo dispositivo semicondutor de eletrônica de potência, é para ser empregado nas chamadas Unidades de Controle de Fluxo de Energia (ou Unidades de Controle de Potência, em inglês, Power Control Unit (PCU)), que é um módulo de eletroeletrônica que existe nos Veículos Elétricos híbridos.

Seu emprego será, sobretudo, visando uma melhoria de cerca de 10% na eficiência de combustível destes veículos, além de reduzir volume e peso dos componentes de eletrônica de potência agregados ao veículo. Todavia, é bom esclarecermos que as PCUs existem não apenas nos Veículos elétricos híbridos mas, também nos Veículos Elétricos puros, aqueles que são movidos somente a partir da eletricidade armazenada em um pacote de baterias, e que não consomem nenhum tipo de combustível.

Quem tem acompanhado o desenvolvimento do mercado mundial de VEs nos últimos anos já deve ter percebido que uma característica sui generis da Toyota parece ser a de não querer ver o seu nome associado a grandes expectativas positivas com relação ao futuro do mercado dos VEs puros mas, ainda assim, ela apoia os VEs híbridos, com a produção da sua família de veículos denominada Prius, que no geral, são classificados pela Agência de Proteção Ambiental dos Estados Unidos como veículos de ultra baixas emissões de poluentes.

Quanto aos VEs puros, a Toyota já teve no mercado norte americano, de 1997 a 2003, o Toyota RAV4 EV, que foi descontinuado desde então, mas que foi retomado com uma produção bastante limitada, de apenas 2600 unidades ano, em parceria com a Tesla Motors, como Toyota RAV4 EV de segunda geração, a partir de 2012. Devido a esse seu posicionamento político e comercial, ao lançar agora essa nova tecnologia de semicondutores de potência em parceria com a Denso, a Toyota menciona, apenas, aplicação para  carros híbridos.

Em 2013, em um discurso no The Economic Club of Washington D.C., o presidente da Toyota, Takeshi Uchiyamada, afirmou:

"A razão pela qual a Toyota não introduz qualquer grande [veículo elétrico puro] é porque não acreditamos que há um mercado para aceitá-lo."

A fim de esclarecer melhor a sua posição, Uchiyamada disse ainda que, pelo menos "duas descobertas" são necessárias antes de os veículos elétricos, puramente a bateria, estejam prontos para o mercado, e que essas duas "descobertas" se traduzem em duas etapas de novas tecnologias de bateria, ou seja, Uchiyamada não vê um mercado de veículos elétricos puros interessante, pelo menos, até meados da próxima década.

Veja também: Tipos de Veículos Híbridos e Terminologia

Não obstante, tanto em veículos elétricos híbridos, quanto em veículos de tração elétrica pura, a  unidade de controle de potência - PCU é um módulo de eletrônica de potência que fornece energia elétrica a partir da bateria para o motor, para controlar a velocidade / torque do veículo. Porém essa mesma unidade serve, também, para enviar de volta a eletricidade que é gerada no motor (que se torna qual um gerador), durante as desacelerações do veículo, para ser rearmazenada na bateria. Nos VEs puros, as PCUs são mais comumente denominadas pelo termo Inversor (em inglês, Inverter).

Uma unidade de controle de potência - PCU contém vários semicondutores de potência, como parte de seus componentes. Estes semicondutores de potência são, de fato, transistores e diodos, que formam circuitos eletrônicos que operam na regulação da potência, tanto no modo de tração, quanto no modo de frenagem do veículo, por meio de chaveamento.

Tais semicondutores de potência, em geral, até o presente momento, ainda são feitos com a tecnologia convencional de silício. É importante notar que, apenas esses semicondutores de potência correspondem por mais de 25% do total dos semicondutores empregados ​​em um VE, seja ele híbrido ou puro.

Dai a importância dessa evolução tecnológica, com a mudança do material empregado na construção de tais semicondutores de silício (Si) para carbeto de silício (SiC), o que corresponderá a uma enorme quebra de paradigmas, de modo que eu entendo que todos os que trabalham com tecnologia eletroeletrônica e com veículos auto motores precisam conhecer. Antes, porém, vejamos uma brevíssima introdução ao material empregado nessa tecnologia:

Carbeto de Silício (SiC):


O material Carbeto de Silício (SiC), também conhecido como carboneto (ou carbureto) de silício ou, ainda, carborundum, é um composto de silício e carbono, que ocorre na natureza como o mineral extremamente raro denominado Moissanita. O Carbeto de silício em pó, no entanto, tem sido produzido em massa, desde o final do século XIX, para o uso como um abrasivo.

Os grãos de carbeto de silício podem ser unidos, por um processo térmico denominado sinterização, para formar cerâmicas muito duras, que são amplamente utilizadas em aplicações que requerem alta resistência, tais como pastilhas de freios de automóveis, discos de embreagens e placas de cerâmica em coletes à prova de balas.

As aplicações eletrônicas mais conhecidas do carbeto de silício, como diodos emissores de luz (LEDs) e detectores em rádios, foram primeiramente demonstradas em torno de 1907, e hoje o SiC é amplamente utilizado na construção de dispositivos de eletrônica de potência, que se caracterizam pela performance em alta temperatura e alta tensão.

Grandes cristais simples de carbeto de silício podem ser cultivados pelo método Lely1; que podem ser cortados em gemas conhecidas como moissanita sintética. O carbeto de silício, com uma área superficial elevada, pode ser produzido a partir do SiO, contido em materiais vegetais.

O carbeto de silício existe em cerca de 250 formas cristalinas. O polimorfismo de SiC é caracterizado por uma grande família de estruturas cristalinas similares chamados politipos. Eles são variações do mesmo composto químico que são idênticos em duas dimensões, mas que diferem em três dimensões. Assim, eles podem ser vistos como camadas empilhadas em uma determinada sequência.

Uma estenografia tem sido desenvolvida para catalogar o grande número de possíveis estruturas cristalinas politipo: Vamos definir três estruturas de bicamada de SiC (que é de 3 átomos com duas ligações entre eles nas fotos abaixo) e classificá-los como A, B e C. Os elementos A e B não alteram a orientação da bicamada (exceto para possível rotação em 120 °, o que não muda a rede cristalina e é ignorado a seguir); a única diferença entre A e B é de mudança da rede cristalina. O elemento C, no entanto, torce a malha cristalina em 60 °.

2H-SiC
4H-SiC
6H-SiC

Usando esses A, B, C elementos, podemos construir qualquer politipo SiC. Mostrado acima são exemplos dos politipos hexagonais 2h, 4h e 6h como seriam escritos no esquema de classificação Ramsdell onde o número indica a camada ea letra indica a rede cristalina de Bravais.

A estrutura 2H-SiC é composta apenas de elementos A e B empilhados como ABABAB.

A célula unitária 4H-SiC é duas vezes mais longa, e sua a segunda metade é torcida em relação a estrutura 2H-SiC, formando o empilhamento ABCB.

A célula de 6H-SiC é o triplo da 2H-SiC, e a seqüência de empilhamento é ABCACB.

O cúbico 3C-SiC (não mostrado) tem empilhamento ABC.

Os maiores avanço na tecnologia de dispositivos semicondutores de potência na atualidade são esperados a partir da substituição do tradicional silício por semicondutores de intervalo de banda larga e, neste momento, o carbeto de silício (SiC) é considerado o material mais promissor.

Díodos de Schottky SiC, com tensão de ruptura de 1200 V já se encontram disponíveis comercialmente, tal como, também, um V 1200 JFET . Como ambos são dispositivos que conduzem portadores majoritários, eles podem operar em alta velocidade.

Dispositivos bipolares vêm sendo desenvolvidos para tensões mais elevadas (de até 20 kV). Entre as suas vantagens, o SiC pode operar a uma temperatura mais elevada (até 400 °C) e tem uma menor resistência térmica do que o silício, o que permite uma mais fácil refrigeração do dispositivo semicondutor.

Técnica de Controle de Potência com Conversores Estáticos:


Eletrônica de Potência é uma tecnologia utilizada no processamento da energia elétrica visando obter maior eficiência (menores perdas nos processos de conversão de energia) e qualidade (energia limpa em termos de impacto ambiental). Os métodos empregados em Eletrônica de Potência baseiam-se na utilização de dispositivos semicondutores operados em regime de chaveamento para realizar o controle do fluxo de energia entre fontes e cargas.


O termo “conversor estático” foi criado em contraponto aos conversores rotativos elétricos, de existência anterior, e que se caracterizam por apresentarem uma arquitetura que associa duas máquinas elétricas rotativas: uma operando como motor e outra operando como gerador, acopladas pelos respectivos eixos.

Empregando-se as atuais arquiteturas de conversores estáticos, não só é possível se realizar a dosagem da energia elétrica transferida, como também realizar qualquer tipo de modificação de formas de onda de tensões e correntes entre fontes e cargas, conforme mostra o diagrama a seguir:


Diferente dos antigos conversores rotativos elétricos, os conversores estáticos designam genericamente circuitos de eletrônica de potência que controlam o fluxo de potência entre uma fonte de energia elétrica e um consumidor de energia elétrica, operando na mudança do valor da tensão elétrica e / ou da forma de onda atual da fonte de energia por meio de uma sequência de comutações (chaveamento) de interruptores estáticos, que são chaves semicondutoras tais como transistor bipolar, MOSFET, tiristor SCR, GTO, ou semicondutores de potência de tecnologia híbrida como os IGBT, MCT, IGCT, etc.

Os componentes semicondutores que operam em modo de comutação (operados como chaves), o ciclo de trabalho, que é a razão entre o tempo em que o semicondutor está comandado para o estado de condução e o tempo em que o semicondutor está comandado para o estado de bloqueio, e, eventualmente também a frequência desse chaveamento, são alterados através da aplicação de sinais de controle, provendo assim uma eficiente regulação, por exemplo, da potência de saída, fazendo compensações em função da demanda e das condições da carga.

Assim, as Unidades de Controle de Potência empregada nos VEs são, genericamente, independentes se chamarmos elas pelo termo "Inversor" ou por outro termo qualquer, conversores estáticos, que operam dentro dos termos explicados acima.

Uma vez que as fontes de alimentação de energia elétrica são, tipicamente, de valor de tensão constante, sejam elas CA ou CC (tal qual é o caso do pacote de baterias dos VEs que apresenta entre os seus terminais de saída uma tensão elétrica contínua constante), caso seja preciso controlar (ou tão somente poder variar) a potência que aplicada a uma carga a partir daquela fonte, é necessário o emprego de algum tipo de dispositivo que seja capaz de "dosar" a quantidade de energia a ser transferida para a carga.

Se a variação ou controle for feito pela manipulação da tensão, o elemento de controle deve ter uma posição em série entre a fonte de alimentação e a carga, como indicado nas figuras a seguir:


Pode-se ter um elemento atuador linear (a), sobre o qual tem-se uma queda de tensão proporcional à sua impedância. Mas, no entanto, neste caso, a queda de tensão sobre a impedância do elemento atuador associada à corrente que flui por este e que segue suprindo a carga, certamente representará uma significativa perda de energia sobre o elemento atuador.

Diante deste problema, a maneira mais eficiente e simples de manobrar valores elevados de potência é por meio de chaves (b). Como uma chave ideal apresenta apenas dois estados estáveis:

  • Condução (a corrente é grande, porém a tensão sobre a chave é nula);
  • Bloqueio (a tensão é considerável, porém a corrente pela chave é nula).

Devido a variável nula e, como a potência dissipada sobre a chave resulta da multiplicação de ambas, então não existe dissipação de potência sobre ela em nenhuma das duas condições, garantindo uma alta eficiência energética deste tipo de arranjo. Por isso, na época quando as fontes de alimentação se tornaram chaveadas, isso foi considerado um grande avanço tecnológico e começou, então, a era dos componentes de Eletrônica de Potência, dos dispositivos semicondutores que são, normalmente, usados apenas no modo de chaveamento (liga / desliga), sendo geralmente otimizados para este tipo de operação. A maioria deles não deve ser usada em operação linear.

Todavia, é preciso ainda considerar, ainda, mais dois detalhes:

  1. Obviamente este tipo de variação não é uma variação contínua (linear), mas sim pulsada (chaveada). No entanto, dada a característica de armazenadores de energia (capacitores e indutores) presentes na maioria das aplicações com cargas, tais como os motores (que são cargas predominantemente indutivas) e como na maior parte dos casos práticos, a freqüência de comutação do chaveamento é muito maior do que a constante de tempo deste tipo de carga, então a própria carga acaba atuando como um filtro, extraindo da tensão instantânea aplicada sobre ela o seu valor médio (veja 
    VOMED 
    na figura anterior).
  2. Infelizmente, apesar de chegar bastante perto de ser, as chaves semicondutoras não são (e provavelmente nunca serão) perfeitas (não são chaves ideais). Assim, enquanto que o ideal seria que toda potência extraída da fonte fosse transferida a carga, na prática, sempre haverá alguma perda potência, mesmo que pequena, sobre as chaves.
Por essas razões que, ao longo dos últimos 60 anos, tantos tipos diferentes de semicondutores de eletrônica de potência diferentes foram lançados, tais como transistor bipolar, MOSFET, tiristor SCR, GTO, ou semicondutores de potência de tecnologia híbrida como os IGBT, MCT, IGCT, etc. Sempre buscando obter maior eficiência: menores perdas nos processos de conversão de energia.

Vantagens dos Semicondutores SiC:


Com o novo semicondutor de SiC desenvolvido pela Toyota e pela Denso, a montadora de veículos pretende alavancar os benefícios da alta freqüência de chaveamento e alta eficiência de semicondutores de potência SiC para permitir reduzir em de 80% o volume  (e o peso) das unidades de controle de potência de automotores (VEs híbridos e elétricos). A Toyota começará a condução de veículos de teste, equipados com as novas unidades de controle de potência de automotores, em vias públicas no Japão, dentro de um ano.


Nos semicondutores de potência SiC as perdas são reduzidas a 1/10 das perdas relativas aos semicondutores de potência de silício, e freqüência de chaveamento do acionamento pode ser aumentada por um fator de até dez. Isto permite que a bobina e o capacitor, que representam cerca de 40% do tamanho das unidades de controle de potência de automotores, sejam, também, de tamanho reduzido. 

Além de reduzir o volume em 80%, através do uso de semicondutores de potência SiC, a Toyota pretende melhorar  a eficiência do combustível dos seus veículo híbrido em 10%, em conformidade com a norma do ciclo de teste (MLIT) JC08 do Ministério da Terra, Infraestrutura, Transportes e do Turismo japonês, em relação as unidades de controle de potência de automotores com semicondutores de silício.

Esquerda: PCU com Semicondutores de Potência de Silício (modelo de produção atual). Direita: PCU com Semicondutores de Potência SiC (meta futura).

Operação dos Semicondutores SiC:


A grosso modo, durante a operação de chaveamento dos semicondutores (diodos e transistores), na etapa da condução o semicondutor está em estado ligado e, assim, existe corrente elétrica fluindo por ele. Se o semicondutor fosse uma "chave perfeita", mesmo fluindo uma elevada corrente (em torno de até 200A), a potencia dissipada sobre ele seria nula, pois a queda de tensão sobre ele seria zero. Porém, parte da potência é perdida (desperdiçada) na forma de calor sobre o corpo do próprio semicondutor.

Além disso, perdas semelhantes também ocorrem quando os semicondutores são chaveados para o estado desligado e a corrente cessa, pois a corrente se retarda em cessar.


A principal causa das perdas existirem na operação dos semicondutores de potência de silício é devido ao fato de que o chaveamento (liga / desliga) precisa ser feito em alta frequência  (milhares ou dezenas de milhares de chaveamentos a cada segundo), e que, tanto a resposta da entrada em condução, quanto e, principalmente, a resposta da entrada em bloqueio dos semicondutores atuais de Si não conseguem, na pratica, ser instantâneas, ocorrendo de, por exemplo, uma corrente "de cauda", mesmo que decadente, continuar fluindo por um pequeno tempo, da ordem de microssegundos, após o comando do desligamento do semicondutor.

De modo vantajoso, o desligamento da condução em semicondutores SiC, as perdas de potência são bastante menores pois, o efeito de corrente "de cauda" é muito menos acentuado, pois o semicondutor SiC responde muito mais rápido do que os tradicionais de silício. Essa maior rapidez do semicondutor de SiC ocorre durante a comutação, tanto para ligar, quanto para desligar.

Isto significa que as perdas se tornam pequenas (relativamente bem menores do que nos semicondutores de silício), e que, consequentemente, uma maior eficiência é alcançada.




Porque as perdas de comutação são bem menores em semicondutores de potência de SiC, as unidade de controle de potência podem, inclusive, passar a operar em frequência de chaveamento ainda maiores, o que é conveniente. Nas unidade de controle de potência atuais, bobinas e capacitores, que operam como elementos armazenadores temporários da energia elétrica, ocupam 40% do volume da PCU, e ainda são bem pesados. Com o controle dotado de semicondutores SiC, operando em mais alta freqüência, permite ainda a redução de volume / peso de bobinas e capacitores dentro da PCU. 

No entanto, as PCUs são responsáveis ​​por, apenas, aproximadamente 25% da perda total de energia elétrica, em meio ao todo do sistema existente nos veículos elétricos híbridos, onde podemos contabilizar em 20% desse todo a perda que é associada com os semicondutores de potência existentes.

Portanto, apesar de não nunca podermos reduzir a zero todas as perdas, uma forma essencial para melhorar a eficiência do combustível é melhorar a eficiência de energia de semicondutores, especificamente através da redução da resistência que é oferecida pelo semicondutor à passagem da corrente, quando ele se encontra comutado para o estado de condução. 

Devido à importância dos semicondutores de potência, a Toyota tem empreendido esforços para desenvolvê-los dentro da sua própria casa, desde o lançamento da primeira geração do Prius híbrido gasolina-elétrico, em 1997, e concentrou-se em aumentar a sua eficiência.

Como um exemplo, os semicondutores de potência Si utilizados no atual Prius, já de terceira geração, mesmo continuando a ser só de silício, têm apenas um quarto da perda de potência daqueles semicondutores empregados na primeira geração.

Como semicondutores SiC permitem uma maior eficiência do que o silício sozinho, a Toyota CRDL e Denso começou a pesquisa básica ja de longa data, desde a década de 1980, com a Toyota participando a partir de 2007 para desenvolver em conjunto com a Denso os semicondutores de SiC para uso prático em veículos elétricos.

Toyota e Denso desenvolveu os transistores de alta eficiência de SiC por meio da adoção de uma estrutura de trincheira.

Últimos Informes:


A Toyota já instalou os semicondutores de potência SiC desenvolvidos em PCUs para os híbridos de protótipos e, teste de condução em pistas de teste confirmou um aumento de eficiência de combustível superior a 5% sob o ciclo de teste JC08 (norma japonesa).

Em dezembro do ano passado, a Toyota estabeleceu uma sala limpa para o desenvolvimento dedicado de semicondutores de SiC em sua planta de Hirose , que é uma unidade especializada em pesquisa, desenvolvimento e produção e produção de dispositivos de controle eletrônico, inversores, semicondutores, etc.

Assim, além melhor motor e a performance aerodinâmica dos veículos, a Toyota está se posicionando semicondutores de potência de alta eficiência como uma tecnologia-chave inovadora para melhorar a eficiência de combustível para os veículos elétricos híbridos, mas que servirão, também, para alavancar os veículos elétricos de tração puramente elétrica. Daqui para frente, a Toyota vai continuar a impulsionar as atividades de desenvolvimento com vista a rápida implementação de semicondutores de potência de SiC.

Veja o vídeo em que a Toyota apresentou a tecnologia na Exposição de Engenharia Automotiva 2014, realizada entre 21 e 23 de maio, no Centro de Convenções Pacifico Yokohama, em Yokohama.


E um segundo vídeo ilustrativo que eu selecionei para vocês:


Notas:

  1. Método de produção de cristais de carbeto de silício por crescimento epitaxial (obtenção de camadas finas, de espessuras de alguns nanômetros a alguns micrômetros, sobre um substrato cristalino) do cristal por meio da sublimação (passagem direta do estado sólido para o gasoso do material).

domingo, 31 de março de 2013

Freio Regenerativo (Sistema de Recuperação de Energia Cinética)


Do ponto de vista do Acionamento, aquele dispositivo ao qual chamamos "Motor Elétrico" em um Veículo Elétrico (VE), não convém ser chamado assim. A denominação mais conveniente seria, simplesmente, Máquina Elétrica. Isso pois, do ponto de vista do acionamento, tal máquina pode estar operando de 4 maneiras distintas, que são tecnicamente denominados Quadrantes de Acionamento.

Os Quadrantes de Acionamento contemplam, cada qual, diferentes comportamentos das variáveis do sistema “Velocidade” e “Conjugado” (ou "Torque", sendo torque e conjugado, sinônimos). Assim, na aceleração ou na manutenção da velocidade, teremos a Máquina Elétrica tracionando a Carga e, já na na desaceleração, teremos a Carga tracionando a Máquina Elétrica.

Quando temos Aceleração ou mesmo quando temos a Manutenção da Velocidade Estável, dizemos que um VE está operando no Modo Tração, onde o VE está consumindo Energia Elétrica a partir da bateria para se locomover, vencendo forças de oposição (resistência do ar, atritos, a inércia da sua massa e tudo mais que agir como resistência ao rolamento dos pneus do veículo) e movimentando a sua massa (e mais a dos ocupantes, bagagens, etc), a uma dada velocidade, em uma determinada trajetória, sobre numa Pista Plana ou de Aclive. Neste processo, a Energia Elétrica tomada da bateria está sendo convertida em Energia Cinética (energia relacionada com o estado de movimento de um corpo).

Note que é possível um caso particular, em que um veículo que esteja em movimento possa estar ganhando velocidade (aceleração), todavia, sem que ele esteja no Modo Tração. Isso é característico de locomoção em trajetória sobre pista de declive, onde, mesmo se utilizando do Freio Motor, o veículo pode ganhar velocidade, sem a necessidade de consumir energia a partir da bateria. Neste caso, é a Energia Potencial que está sendo convertida em Energia Cinética.

Já, quando operando em uma trajetória sobre numa Pista Plana ou de Aclive, se temos Desaceleração,  (independente se estamos ou não pisando no pedal do freio), dizemos que o VE está operando no Modo Frenagem, onde o VE não gasta nenhuma energia elétrica e, muito pelo contrário, pode até mesmo capitar a Energia Cinética do Movimento de Inércia que está no eixo das rodas e, recolhe-la para dispositivos armazenadores.

O conceito da figura está correto, no entanto, o desenho é apenas ilustrativo, pois, como a Máquina Elétrica (motor) recebe (ou entrega) Energia Elétrica do tipo CA e a Bateria (de íons de lítio) entrega (ou recebe) Energia Elétrica do tipo CC, então, elas são incompatíveis entre si, não podendo estarem conectadas diretamente uma a outra. No desenho falta mostrar alguns blocos importantes como o Inversor e o Conversor CC/CC, que intermedeiam entre a Bateria e o Motor.

De fato, num VE, essa capitação e recolhimento da Energia Cinética do Movimento de Inércia ocorre sempre, em qualquer situação de operação, que se faça uso do Freio Motor, tanto em desacelerações pista plana ou de aclive, quanto e, principalmente, no caso de locomoção em pista de declive.

Assim, ao utilizarmos os termos "Motor" ou "Gerador", devemos ter em mente que estes são apenas atributos funcionais virtuais de uma mesma Máquina Elétrica (ou modos de operação dela), pois, no Modo Tração a Máquina Elétrica atua como "Motor", enquanto que no Modo Frenagem, a mesma Máquina Elétrica atuará como "Gerador" e ele REGENERA ENERGIA.



Assim, podemos definir para um VE típico (como para qualquer outra aplicação motorizada em velocidade e carga variável), Quatro Quadrantes Acionamento, onde temos 4 situações distintas, as quais, de modo resumido, são as seguintes:
  • No 1º Quadrante: Aceleração, ou manutenção da velocidade estável do VE, com locomoção em Sentido Avante (Modo Tração em locomoção para avante). Assim, as variáveis: Velocidade (n) e Conjugado do Motor (CMO), assumem por convenção, ambas valores positivos. O motor está absorvendo energia da bateria (a energia vai da bateria para o motor) e este converte em energia mecânica (cinética) tracionando as rodas, movendo a Carga;
  • No 2º Quadrante: Frenagem do VE com locomoção em Sentido Avante. Caracteriza-se pela situação de Frenagem do Motor e, pela natureza operacional do sistema, ocorre sempre que a Referência de Velocidade (nREF) imposta pelo motorista ao Inversor (informada pelo Pedal do Acelerador) passa a solicitar uma velocidade de valor inferior do que o valor da velocidade atual (nREF<nATUAL). Em outras palavras, basta que se alivie o pé sobre o pedal do acelerador para que entremos no Modo Frenagem. Em oposição ao que ocorre no 1º Quadrante, não estamos tomando energia da bateria (ou outra qualquer outra fonte, como a própria rede elétrica de corrente alternada, por exemplo), mas sim, devemos procurar consumir a energia que já está acumulada (pelo movimento de inércia da máquina), seja este consumo feito por via elétrica ou mesmo mecânica. Todavia, como o VE (e toda a massa contida nele) continua se movendo para avante, a variável Velocidade (tal qual no 1º Quadrante) ainda tem sinal positivo mas, a variável Conjugado (torque), que precisará agir, agora, contra o movimento de inércia e, por conta disso, ele passa a ter sinal negativo;
  • No 3º Quadrante: Aceleração ou manutenção da velocidade estável, com consumo da energia da bateria e com tração da carga (portanto, também é Modo Tração), tal como no 1º quadrante, só que agora a locomoção é no sentido reverso, ou seja, isso ocorre quando estivermos acelerando ou mantendo velocidade, com o VE em Marcha a Ré. Agora, neste caso, ambas as variáveis, Velocidade e Conjugado têm o mesmo sinal, ambos sinais são negativos.
  • No 4º Quadrante: Modo Frenagem do VE, só que agora no sentido reverso, ou seja, de desaceleração em Marcha a Ré. Obvio, então, que a Velocidade é de sinal negativo e, o torque da máquina elétrica, que se opõe ao movimento de inércia, é de sinal positivo.
Obviamente que, a menos que você trabalhe como manobrista de estacionamento, os 3º e 4º quadrantes podem parecer ser de pouco interesse, mas de qualquer forma, eles precisam existir. Mas, o 2º quadrante em especial, é fundamental para os bons motoristas: é essencial que o torque de frenagem colabore com a estabilidade do carro. Em um carro de motor a explosão convencional (sem câmbio automático), você precisa fazer isso combinando a frenagem com a troca de marchas, em redução. Já, num VE, que são todos sempre automáticos, você só precisa tirar o pé do acelerador, que o carro já entra em modo frenagem de baixa intensidade, e fica muito mais estável, mesmo que você tire o pé do acelerador muito bruscamente. Assim, podemos resumir o acionamento da máquina elétrica de um VE no seguinte diagrama:

Deste modo, nos 1º e 3º Quadrantes, ambos Modo  Tração, a Máquina Elétrica, de fato, atua como Motor (recebendo, por meio do Inversor, energia elétrica vinda da bateria).

Já, nos 2º e 4º Quadrantes, ambos Modo Frenagem, o Inversor deixa de entregar energia a Máquina elétrica.

No entanto, simplesmente deixar de entregar energia ao motor não significa que o VE irá parar de imediato. O simples corte da entrega de energia corresponde a "colocar em ponto morto". Mesmo que, concomitantemente a isso, façamos atuar freios mecânicos (atrito de lonas ou de pastilhas sobre discos) nas rodas, o VE ainda rodaria por uma certa distância, até parar totalmente (se, no caso, parar totalmente for o objetivo do motorista).

Isso ocorre devido a Inercia, ou seja, a massa do carro já está se movendo, de modo que ela tem, em si, uma energia pré adquirida (e armazenada), então, neste caso, a priori, seria preciso a aplicação de uma energia de sentido contrário, que produza um contra-torque sobre o eixo da Máquina Elétrica, para reduzir a sua velocidade ou para pará-lo.

É ai que coisa começa a ficar interessante pois, em um VE, o tempo todo o eixo da Máquina Elétrica permanece acoplado aos eixos das rodas rodas.

Em geral, salvo no caso de emprego tecnologias mais arrojadas e caras, em que cada Roda do VE é dotada de uma Máquina Elétrica individual (ver sobre Motor de Fluxo Axial), em geral, esse acoplamento permanente não é realizado diretamente mas, sim, por meio do Diferencial, um antiquíssimo dispositivo mecânico que tem a função de dividir o torque disponível no eixo do motor entre dois semi-eixos, possibilitando a eles velocidades de rotações distintas. O diferencial possibilita torque igual para os semi-eixos, independentemente das suas velocidades de rotação.

Um diferencial transfere, mediante engrenagens cônicas, as rotações pelo Eixo Cardan para ambos os semi-eixos. Em geral, o diferencial é empregado nos veículos terrestres tracionados por motores de qualquer natureza, incluindo a maioria dos Veículos a Combustão Interna (VCI).

Para o VE entrar em locomoção (1º Quadrante) avante, o torque é produzido pela Máquina Elétrica e chega ao diferencial através do Eixo Cardan (eixo do pinhão), e assim é dividido entre as duas rodas de tração.

Sem o Diferencial, nós precisaríamos de duas Máquinas Elétricas, no mínimo, apenas para Tração Traseira, ou apenas para Tração Dianteira, um para cada roda e, também, dois Inversores, um para cada Máquina Elétrica. Os Inversores precisariam ainda estar sincronizados de uma maneira sofisticada, para produzir o efeito do diferencial, o que eleva muito o custo de tal VE(1).

Mas quando o carro está se locomovendo por força da inércia, obviamente suas Rodas ainda giram e, via o Diferencial, a Máquina Elétrica é forçada a girar também, o que torna ela, pela sua própria natureza física, num Gerador e como a Máquina Elétrica gera, entre os seus terminais elétricos surge uma Tensão Elétrica.

Ora, em geral, a Máquina Elétrica que traciona (mas que também desacelera, regenera e freia) os VEs é uma do tipo de Corrente Alternada (CA) Trifásica, (em alguns VEs, como no potente Tesla Model S, é um motor CA de indução trifásico, em outros, como no sedã compacto Nissan LEAF, é um motor de imãs permanentes CA trifásico), de modo que a tensão elétrica gerada assim o é, também (CA Trifásica).

Se não fizermos nada com essa energia que é gerada pela Máquina Elétrica nas desacelerações (frenagens), o VE ficaria sem o seu efeito de "Freio Motor" e, dependeria tão somente dos freios mecânico, que em geral atuam nos discos das rodas, para reduzir velocidade ou para parar.

No entanto, qualquer bom motorista sabe da importância do uso do freio motor para a boa e estável dirigibilidade de um carro. Ainda mais em locomoção sobre pistas em declive, ou em pistas molhadas, o freio motor é algo indispensável. Quanto mais pesado um veículo é, mais importante e mais cuidadosamente operado deve ser o freio motor, para manter o carro sob controle com segurança.

Dai a necessidade de fazermos algo, ou seja, consumir de alguma forma, a energia que é gerada na máquina elétrica dos VEs. É justamente o "consumo da energia gerada" que produz no eixo da Máquina Elétrica o efeito de contra-torque necessário à frenagem, ou seja, o efeito de freio motor.

Isso se torna ainda mais importante, a medida em que a grandeza “Tempo para Parada Total” se torna um problema crítico, pois apenas o freio mecânico, por atrito sobre as partes móveis, pode não ser  suficiente, a contento. Então devemos atuar na Máquina Elétrica, também, de modo a freá-la, desenvolvendo um conjugado (torque) específico para esta frenagem.

Para não tornar essa postagem muito extensa e complexa, eu não o farei neste momento mas, numa próxima ocasião, eu tratarei de explicar melhor toda essa dinâmica de operação da máquina elétrica de um VE, envolvendo as Convenções das Características do Conjugado (vários tipos de conjugado estão em jogo nela) e descreverei melhor, também, sobre Os Três Regimes de Movimento de uma Máquina Elétrica (aceleração, estável, desaceleração).

Mas vamos nos fixar, agora, apenas em quatro fatos:
  • Numa dada circunstância um VE precisará desacelerar;
  • Ao desacelerar a Maquina Elétrica é forçada a girar pela inércia e opera como um gerador;
  • Para frear diretamente na máquina elétrica, precisamos consumir a energia que ela gera;
  • Requisitos de sustentabilidade da tecnologia empregada são de fundamental importância para o desenvolvimento de projetos atuais.
Quais são, então, as opções que se apresentam? Elas são segundo o diagrama apresentado a seguir:


Poderíamos ignorar, completamente, os três últimos fatos apresentados acima e fazer uma frenagem puramente mecânica do eixo da máquina, mas essa não seria uma grande ideia.

Podemos nos lembrar do segundo e terceiro fato e fazer uma frenagem elétrica. No caso de elétrica, a frenagem pode ser por dois tipos: Reostática ou Regenerativa.
  • Reostática: Dissipa a energia gerada na frenagem em Resistores de Potência, na forma de calor (calor que, em geral, para nada é aproveitado). Quanto menor o valor ôhmico do resistor de frenagem, maior a corrente elétrica que circula e portanto maior o conjugado de frenagem (o contra-torque que atua no eixo da máquina, provocando desaceleração), o que faz com que a máquina elétrica pare mais rapidamente (maior desaceleração). Substituindo-se o resistor de frenagem por um curto circuito (resistor de resistência zero), o motor pararia bruscamente mas, uma parada por demais brusca pode não ser uma boa ideia. De qualquer modo, ao final deste processo todas as variáveis (velocidade e torque) terminam zeradas pois elas são interdependentes e, o calor gerado, se não puder ser aproveitado, vai para o meio ambiente.
  • Regenerativa: Sistema de frenagem que faz com que, para frear, a energia gerada na máquina elétrica (no caso o "motor" está se comportando como "gerador") seja devolvida à fonte que originalmente a forneceu, ou seja, no caso dos VEs, a sua bateria principal. Obviamente que a energia não poderá ir diretamente da máquina elétrica (CA Trifásica) para a bateria (CC). Ela precisará fluir através de circuitos de eletrônica de potência que cuidarão de transformá-la e acondicioná-la (primeiro pelo Inversor e depois pelo Conversor CC/CC, nessa ordem de fluxo).
Quando se trabalha com Inversores a frenagem regenerativa é preferível e, o tempo de duração da frenagem é uma função da inercia do tipo de carga (massa total, aerodinâmica do carro, etc). Assim sendo, deve-se promover o controle dela por meio do emprego de uma Rampa de Desaceleração.

Essa tarefa pode ser executada pelo mesmo tipo de regulação que é feita para a quando há a aceleração no modo tração (chaveamento do fluxo da energia por emprego de um trem de pulsos elétricos de certa duração variável), que também é realizada de modo a prover uma Rampa de Aceleração idealizada, tornando assim a frenagem, suave, tal qual a aceleração é suave.

Além do mais, a frenagem regenerativa é a mais ecologicamente correta, pois ela permite conservar a energia, de modo que ela possa ser, posteriormente, usada para realizar o trabalho útil. A frenagem regenerativa é uma ideia simples, porém engenhosas, pois, por reaproveitar energia, a frenagem regenerativa contribui para a sustentabilidade e o meio ambiente.

O Freio Regenerativo:


Um freio regenerativo é um mecanismo de recuperação de energia que produz um contra torque no eixo da máquina elétrica (motor) que causa a diminuição da velocidade de um veículo, convertendo a sua energia cinética em uma outra forma, geralmente em energia elétrica, que é realimentada de volta para a fonte que originalmente a forneceu.

A realimentação (regeneração) da energia nos VEs se dá por meio dos mesmos blocos de circuitos de eletrônica de potência (primeiramente o Inversor e depois o Conversor CC/CC) que antes alimentava a máquina elétrica (motor) quando o veículo estava atuando em modo tração (mantendo velocidade ou acelerando), ou seja, fazendo a corrente elétrica circular em sentido contrário por meio do Inversor. Por isso dizemos que o Inversor, agora, estará atuando no Modo de Regeneração.

De uma maneira geral, a energia regenerada pode ser:
  • Imediatamente utilizada, por exemplo, por um outro veículo que esteja, naquele mesmo momento, em aceleração e que se alimenta da mesma fonte do veículo que está freando (ex. do que ocorre com os trens elétricos), ou;
  • Armazenada até ser necessária, por exemplo retornando das rodas (energia cinética) para a bateria (energia elétrica).
Isto contrasta com os sistemas convencionais de frenagem, onde o excesso de energia cinética é convertida em calor pelo atrito nas lonas ou pastilhas de freio e, portanto, a energia cinética é, tão somente, desperdiçada (mais calor indo para o meio ambiente).

A forma mais comum de freio regenerativo envolve o uso da máquina elétrica, ou seja, do motor elétrico (nome adequado apenas quando em modo de tração) passar a atuar de modo reverso, ou seja, como um gerador elétrico. Historicamente, a frenagem regenerativa foi usada primeiramente em ferrovias, com sucesso, a partir dos anos 1930.

Num trem elétrico a energia gerada na frenagem é alimentada de volta para o barramento de alimentação mas, o seu bom aproveitamento, envolve, muitas vezes, o sincronismo de movimento das locomotivas presentes na linha, sempre devendo haver uma delas localizada nas adjacências, entrando em aceleração, no mesmo momento em que uma outra esteja freando e regenerando.

Já, em VEs de mobilidade pessoal, puros ou híbridos, a energia normalmente é armazenada quimicamente na uma bateria podendo, parte dela, ser armazenada eletricamente, também, em um banco de capacitores, ou ainda mecanicamente em um volante rotativo.

Um freio por regeneração de energia para baterias para VEs foi conceitualmente desenvolvido em 1967 pela Amitron AMC, cuja baterias eram recarregadas pela frenagem regenerativa, aumentando assim o alcance do automóvel. Porém, a Amitron AMC nunca foi além da fase de protótipo, pois, naquela época, as baterias de alta densidade de energia eram muito caras. Isso e outros fatores contribuíram para a decisão da AMC em suspender testes daquele veículo.

Quando os VEs começaram a renascer nos meados dos anos '90, as técnicas de regeneração de energia por meio do emprego de máquinas elétricas e circuitos de eletrônica de potência, utilizadas, principalmente, em aplicações de máquinas industriais, já haviam atingido uma maturidade bastante adequada e, portanto, regeneração de energia se tornou algo natural, inerente aos VEs.

Todavia, o Impacto da Frenagem Regenerativa sobre a Energia Entregue num Sistema de Tração de qualquer espécie de veículo é tal, que passou a ser visto cada vez mais como algo positivamente desejável, inclusive, altamente recomendada pela SAE International para veículos dotados de Motores a Combustão Interna e, essa é mais uma das razões para a existência da tecnologia de Veículos Híbridos.

Por agregar uma Maquina Elétrica (motor / gerador) ao veículo com Motor a Combustão Interna, tornamo-lo, também, apto a realizar frenagem regenerativa. Este simples diagrama mostra como um sistema de frenagem regenerativa é capaz de recuperar parte da energia cinética do veículo com motor a combustão interna convertê-la em energia elétrica. Essa energia elétrica é usada para recarregar a bateria do veículo.

Sistema de Frenagem Combinada:


Tradicional frenagem baseada em atrito é usado, também, em conjunto com a frenagem regenerativa da máquina elétrica, devido às seguintes razões:

O efeito de travagem regenerativa cai quando a operação se dá em velocidades mais baixas, por isso o freio de atrito ainda é necessário, a fim de trazer o veículo a uma paragem completa de modo seguro.

O bloqueio físico do rotor da máquina elétrica também é necessário para evitar que veículos de rolar descendo colinas, quando estacionado. O freio de atrito é redundante mas é ainda muito necessária no caso de uma eventual falha da frenagem regenerativa.

Na maioria dos VEs,  a frenagem regenerativa só tem efeito em algumas rodas (como, por exemplo,  no caso de um VE de tração apenas nas duas rodas dianteiras) e a potência de travagem regenerativa só se aplica a tais rodas porque elas são as rodas ligadas, via o diferencial, ao motor, por isso, a fim de fornecer controlado travagem sob condições críticas, como em estradas molhadas, a frenagem por atrito é necessária com base, principalmente, nas demais rodas.

Em velocidades muito elevadas de condução do VE, deve-se considerar, ainda, que a capacidade de absorção da quantidade de energia elétrica regenerada numa frenagem intensa é limitada pela capacidade da bateria em absorver esta energia. Isso varia dependendo do estado da carga da bateria ou condensadores.

Se já houver muita carga na bateria (e outros acumuladores) e, repentinamente se precise frear a partir de uma velocidade elevada, com grande inércia, os freios por atrito precisam estar dimensionados para, se necessário, realizar a plena frenagem praticamente sozinhos pois, o sistema gestor da bateria pode não permitir que ela receba tanta carga.

Assim, a frenagem regenerativa só pode ocorrer eficazmente, se a bateria ou outros armazenadores disponíveis, como capacitores, já não estão completamente carregados.

Por estas razões todas, é praticamente obrigatório se incorporar Frenagens Dinâmicas, em geral, as mecânicas (em certos caso, mesmo a elétrica reostática, também, combinado) para absorver o excesso de energia inercial, de modo que as frenagens dinâmicas trabalhem em cooperação com a frenagem regenerativa e mesmo cubra, por segurança, alguma eventual deficiência dela.

Conversão em Energia Elétrica - o Motor Como Gerador:


A frenagem regenerativa tem sido no uso extensivo em estradas de ferro por muitas décadas., sendo especialmente eficaz em passagens íngremes. Na Escandinávia, a ferroviária que vai de Kiruna a Narvik transporta minério de ferro das minas de Kiruna, no norte da Suécia, até o porto de Narvik, na Noruega. Os vagões estão cheios de milhares de toneladas de minério de ferro no caminho até Narvik, e esses trens geram grandes quantidades de eletricidade por sua frenagem regenerativa. A energia regenerada é suficiente para alimentar os trens vazios que estão no caminho de volta e, qualquer excesso de energia a partir da estrada de ferro é passado para a rede pública de energia para abastecer casas e empresas na região.

Muitos modernos VEs puramente elétricos e também híbridos utilizam esta técnica para ampliar a autonomia da bateria. Exemplos incluem o Toyota Prius, o Nissan LEAF, o Chevrolet Volt, o Honda Insight e o Tesla Model S e outros.

Até bem pouco tempo, uma desvantagem dos freios regenerativos, quando comparado com os freios dinâmicos (frenagem reostática) era a dificuldade de se suprir a necessidade de se aproximar as formas de onda das correntes gerada para as mesmas características das da fonte e o consequente aumento dos custos de manutenção das linhas.

Com as fontes de corrente contínua, como é o caso das baterias dos VEs, exige que a tensão seja  cuidadosamente controlada. Só com o desenvolvimento da eletrônica de potência isso tem sido possível com o fornecimento de corrente alternada, onde a freqüência de alimentação também deve ser correspondido (isso se aplica principalmente a locomotivas, onde uma fonte CA é retificada para motores CC).

Já, os Motores CA, tanto de indução quanto de imãs permanentes pode fornecer regeneração de modo muito eficiente. Motores CA geralmente podem regenerar quase com a mesma eficiência de quando operam em tração.

Inversores Regenerativos:


Num VE, na operação do Modo Tração, o inversor (controlador do motor) funciona como conversor CC/CA, mas, na operação no Modo Frenagem, o sentido do fluxo de energia é revertido e ele funciona como um conversor CA/CC.

A fim de poder proceder a regeneração da energia com aproveitamento, transformando o energia elétrica do tipo CA (Corrente Alternada) Trifásica, gerada pela Máquina Elétrica, em tipo CC (Corrente Contínua) adequada para entrar na bateria, ao invés de, simplesmente, dissipá-la totalmente como a perda de calor inútil e poluente, precisamos que os VEs sejam dotados Inversores Regenerativos.

Inversores comuns (não-regenerativos), de emprego industrial, têm uma topologia em três seções:

  • uma seção de entrada (ponte retificadora a diodos);
  • um circuito intermediário reservatório de energia (banco de capacitores) e;
  • uma seção de saída (circuito inversor, propriamente dito).
Se a seção de entrada é uma Ponte Retificadora a díodos, que apenas permite que a energia flua numa única direção, em geral, eles operam de tal modo que a energia pode fluir livremente apenas da entrada para a saída e não em ambas as direções através das seções do inversor.

Os Inversores Regenerativos industriais mantém a arquitetura três seções, mas, para funcionar como uma unidade regeneradora, a energia deve poder fluir em ambas as direções. Em geral, a seção de saída já permite isso, mas apenas com a finalidade de que a energia "regenerada" fique presa na seção intermediária do Inversor (reservatório de energia) e para que o excesso dela possa ser dissipado reostaticamente. Mas isso não é, tecnicamente, regeneração mas, sim, frenagem reostática.

O circuito inversor básico (seção de saída) é um arranjo dotado de doze componentes de eletrônica de potência: 6 IGBTs e 6 Diodos Retificadores. Os IGBT(2) são responsáveis por chavear a energia que vai para a máquina elétrica enquanto que os diodos conduzem a energia que retorna da máquina, para fazer a frenagem. Este circuito é denominado Inversor PWM de 6 Pulsos.

Um pulso é produzido por um circuito controlador baseado em microeletrônica, para comandar o chaveamento de cada IGBT numa dada sequência combinada, ligando, de cada vez, um IGBT da parte superior e dois IGBTs na parte inferior, ou dois na superior e um na inferior, dependendo do momento da sequência(3).


Na verdade, cada IGBTs costumam já ser encapsulado juntamente com um diodo mas, muitos Inversores utilizam dispositivos em que todas as doze peças se encontram encapsuladas em conjunto, formando um único bloco.

Todavia, essa topologia de Inversor comum foi pensada para aplicações industriais, ou seja, aquelas em que a fonte de alimentação é uma Rede Elétrica CA, normalmente trifásica. Para os VEs temos que considerar, basicamente, duas diferenças.
  • A fonte de alimentação é a bateria CC principal do VE (não uma rede CA trifásica). Com isso, parte do nosso problema se elimina (não precisamos usar o retificador como seção de entrada). Além do mais, a bateria principal é intermediada para o Inversor através de um estagio Conversor CC/CC, de modo que os diodos que já existem no estágio de saída do Inversor são suficientes para prover a regeneração, cujo chaveamento de controle pode ser provido no próprio Conversor CC/CC. Se não for assim, outra opção é substituir os 6 diodos do estágio de saída por 6 outros IGBTs, associados aos que já existem, em antiparalelo, para poder realizar o chaveamento de controle durante a regeneração.
Se fosse para aplicação industrial, ao invés de VE, precisaríamos modificar (e não eliminar) a seção de entrada do Inversor. Ao invés de ponte retificadora com diodos precisaríamos de um bloco com uma arquitetura combinada Inversor-Retificador, ou seja, a seção de entrada se tornaria idêntica à seção de saída e, assim, teríamos um Inversor regenerativo, capaz\ de permitir fluxo de energia nos dois sentidos.

Uma segunda diferença a ser considerada é:
  • Um Inversor de apenas 6 pulsos faria a Maquina Elétrica vibrar consideravelmente, principalmente se ela for do tipo PMAC (motor CA de imãs permanentes). Os motores PMAC exigem uma unidade de acionamento projetada especificamente para motores de imã permanente, devido ao fato de que esses precisam de uma forma de onda de saída bem mais próxima da senoidal (mas não necessariamente senoidal pura) do que aquela que se poderia ter com o emprego de motores de indução. Isso acaba por resultar na produção de uma variação de torque mais suave e a técnica de comutação de corrente utilizada para controlar o torque do motor requer que cada comutação de fase deva se sobrepor, fazendo ligar, seletivamente, mais de um par de dispositivos chaveadores de potência de cada vez, o que caracteriza um Inversor Multinível. Apenas para se ter uma ideia, para se obter um razoável inversor de 4 níveis, a quantidade de componentes necessária, tanto da seção intermediária quanto da seção de saída triplicaria (3 bancos de capacitores, 18 IGBTs e 18 diodos, fora os diodos extra para grampeamento). 

Sistema de Freio Regenerativo de um VE:


Por que ela fornece um meio eficiente para recuperar energia, realimentando ela e volta para a bateria, nos VEs, o sistema de frenagem regenerativa é de fundamental importância para se prover uma extensão da autonomia do carro. Por isso busca-se, sempre, reaproveitar ao máximo toda energia cinética de inércia nas frenagens. No Nissan LEAF, durante a frenagem, o sistema pode recuperar até 39% da energia cinética do veículo e usá-lo para recarregar a bateria.

O Nissan LEAF, além de operar frenagem regenerativa, tem, também, um sistema de freios de atrito convencional, operado hidraulicamente que é operado em combinação cooperativa com a frenagem regenerativa, somando forças.

O completo sistema de freios do Nissan LEAF inclui:
  • Frenagem regenerativa a partir da sistema de tração dianteiro;
  • Freio a disco ventilado com anti-bloqueio e potência monitorada, controlada e distribuída independentemente nas 4 rodas;
  • Travão de estacionamento eletrônico nas rodas traseiras;
  • Mecanismo de estacionamento: uma lingueta engata, travando a engrenagem da caixa de  redução(4), impedindo da transmissão girar.
O sistema de freios hidráulicos é eletricamente assistido. O Nissan LEAF adota um "sistema de freio elétrico orientado inteligente" que é inerente ao VDC (Vehicle Dynamic Control Unit), com a aplicação de um pequeno motor de reforço interno que opera o pistão no interior do cilindro mestre para gerar força auxiliar. Um sensor de força ligado ao pedal do freio detecta a quantidade de frenagem desejada e informa o "sistema de freio elétrico orientado inteligente" do VDC.

Este sistema de freios possui uma função de frenagem regenerativa, de modo que o VDC realiza controle cooperativo do freio de atrito e da frenagem regenerativa de acordo com o curso do pedal de freio e da quantidade de energia realimentada da frenagem regenerativa cooperativa.

Um sensor de pressão no cilindro mestre informa o VDC sobre aumento ou diminuição da travagem auxiliar para a pressão dentro do cilindro principal ser igual a "pressão-alvo", derivado da quantidade de movimento do pedal do freio.


Concomitantemente às funções de controle da frenagem, o VDC recebe informação de, ainda, outros sensores e opera, também, a função de controle de tração, no intuito de buscar atingir uma ótima estabilidade e dirigibilidade. O VDC pode ajudar o condutor a manter o controlo do veículo, mas não pode evitar a perda de controlo do veículo em todas as situações de condução.

A autonomia pode ser estendida em cerca de 25% pela função de freio regenerativo, extensão avaliada no padrão LA4 da Agencia Ambiental dos EUA. Este sistema de freio adotou capacitores de reserva de energia embarcado, que operam como fonte em caso de falha no fornecimento de energia. O "Supercapacitor" armazena energia elétrica para uso do reforçador do cilindro do freio hidráulico.

O freio de estacionamento / emergência pode ser aplicado tanto enquanto parado, quanto durante a condução. O sistema de freio de estacionamento / emergência consiste de dois freios a tambor, um em cada cubo traseiro.



Por se mudar o seletor da unidade de configuração avançada para a opção disponível "B-Mode", pode-se otimizar o freio, aumentando a força da frenagem regenerativa e a resposta do freio.

(1) Apesar de mais sofisticados e caros, VEs assim estão sob P&D, pois a performance dinâmica deles é ótima mas, eu desconheço, atualmente, qualquer oferta de produto comercial em série, com essa tecnologia. Baseado no relatório de pesquisa Axial-Flux Permanente-Magnet Motor Designe For Electric Vehicle Direct Drive Using Sizing Equation and Finite Element Analysis, eu pretendo fazer uma futura postagem aqui neste blog.

(2) O IGBT é um Dispositivos Semicondutores de Potência de tecnologia híbrida que reúne em um único componente duas importantes características:

  • Características de comutação dos Transistores Bipolares de Potência: que permitem sua utilização no controle de elevadas correntes com baixas perdas quando no estado de condução. No entanto trazem certas desvantagens nas aplicações de potência, uma vez que suas características de entrada exigem que as correntes de base sejam elevadas, já que operam como amplificadores de corrente.
  • Característica de elevada impedância de entrada dos transistores de efeito de campo de porta isolada (MOSFET’s): com a vantagem de serem dispositivos controlados por tensão, tendo assim alta impedância de entrada. A intensidade do campo elétrico gerado pela aplicação da tensão a porta (Gate) controla a largura do canal que dá passagem à corrente elétrica principal. Mas os MOSFET’s têm como desvantagem que, para altas correntes, eles não pode operar em altas velocidades de comutação devida às capacitâncias parasíticas de porta (Gate). Tais capacitâncias parasíticas tendem a aumentar com a elevação da intensidade da corrente que deve ser controlada. No entanto, para baixas correntes de condução através do canal, o MOSFET pode operar com frequências bastante elevadas, normalmente superiores à freqüência máxima de operação de um Transistor Bipolar de Potência (TBPs).

O IGBT reúne a facilidade de acionamento dos MOSFET’s e sua elevada impedância de entrada com as pequenas perdas em condução dos Transistores Bipolares de Potência. Sua velocidade de chaveamento é determinada, a princípio, pelas características mais lentas – as quais são devidas às características dos Transistores Bipolares de Potência. Assim, a velocidade dos IGBT’s é semelhante à dos Transistores Bipolares de Potência; no entanto, nos últimos anos ela tem crescido gradativamente, permitindo a sua operação em frequências de até algumas dezenas de kHz, em componentes especificados para correntes na faixa de dezenas e até centenas de Ampères.

Juntando o que há de melhor nesses dois tipos de transistores, o IGBT é um componente que vem se tornando cada vez mais recomendado para comutação de carga de alta corrente em regime de alta velocidade. De fato, praticamente todos os conversores modernos, sejam conversores CA/CC ou sejam Conversores de Freqüência (Inversores) têm a unidade de potência constituída principalmente de IGBTs, tanto na seção de saída para a operar a máquina elétrica, quanto na seção de entrada, a fim de operar a frenagem regenerativa.

(3) No inversor básico de 6 pulsos, os pulsos de tensão de porta para comando de cada um dos IGBT’s são controladas a partir de uma Máquina de Estados Finitos, onde cada estado corresponde ao chaveamento de:

  • Sempre três (e apenas três) IGBT’s são ligados simultaneamente de cada vez;
  • Nunca são ligados simultaneamente dois IGBT’s da mesma associação em série;
  • Nunca são acionados simultaneamente todos os três da parte de cima, nem todos os três da parte de baixo, pois isso não produz caminho algum para a corrente;

Referindo-se aos diagrama a seguir, a ordem de chaveamento é mostrada na tabela:

Nos gráficos apresentados a seguir temos as tensões que são conectadas para a carga por cada uma das chaves com o intervalo de tempo da comutação e a tensão total que pode ser vista entre a fase C e o Neutro central, para o caso de uma associação de cargas trifásicas em Y na saída.



Assim, vemos que a forma de onda da tensão na fase C com respeito ao neutro é formada por seis segmentos idealmente retos, como mostrado na figura. Por isso, este bloco funcional é denominado de um inversor de 6 segmentos (ou 6 pulsos). As formas de onda nas demais fases apresentam a mesma forma de onda que a da fase C, com apenas uma diferença de fase de 120° de uma em relação à outra.

Esta forma de onda na saída se semelha a uma forma de onda de CA senoidal, embora ainda possua muita distorção harmônica (possui componentes harmônicos de frequências mais altas).


(4) A Máquina Elétrica (motor elétrico) é integrado a essa Caixa de Redução de Velocidade Única, que é acoplada ao seu eixo de saída e pelo meio da qual, a potência mecânica de tração é transferida ao Eixo Cardan e deste para o diferencial e do diferencial para as rodas (na regeneração o caminho é o inverso). No Nissan LEAF, por exemplo, essa engrenagem de redução única é de 1 : 7,94. Vale lembrar que na mesma proporção em que a velocidade é reduzida na saída da caixa de redução, o torque é aumentado, de modo que a potencia é conservada.

Veja Também:


O Básico Sobre o Sistema de Tração de Veículos Elétricos


Os Inversores de Frequência dos Veículos Elétricos


Licença Creative Commons
Este trabalho de André Luis Lenz, foi licenciado com uma Licença Creative Commons - Atribuição - NãoComercial - CompartilhaIgual 3.0 Não Adaptada.